Plan for 02/10.

Presentation 1
Section 9.1.

Presentation 2
Section 9.3.

Presentation 3
Section 9.2. (If there is time.)

Exercise 1
Let X be a normed space and X' be its dual space. Let $Y \subseteq X$ be a subspace. We define the annihilator Y^\perp of Y as

$$ Y^\perp = \{ l \in X' : l \text{ vanishes on } Y \}. $$

Show that Y^\perp is a closed subspace of X'.

Exercise 2
Let X be a normed space, X' be its dual space, and $Y \subseteq X$ be a closed subspace. Show that the annihilator Y^\perp is isometrically isomorphic to the dual of X/Y.

Exercise 3
Let X be a normed space, X' be its dual space, let $Y \subseteq X$ be a subspace, and let Y' be the dual of Y. Show that Y' is isometrically isomorphic to X'/Y^\perp.