Integration Theory MATM18, Spring 2016

Assignment

1. Let (X, \mathcal{A}, μ) be a measure space and let (A_k) be a sequence of sets in \mathcal{A}. Let

 \[B = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k, \quad C = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k. \]

 1. Show:

 \[B = \{ x \in X : x \in A_k \text{ for all but finitely many } k \in \mathbb{N} \}, \]

 \[C = \{ x \in X : x \in A_k \text{ for infinitely many } k \in \mathbb{N} \}. \]

 2. Show that

 \[\liminf_k \chi_{A_k} = \chi_B, \quad \limsup_k \chi_{A_k} = \chi_C \]

 B is therefore called the lim inf of the sequence of sets (A_k), and C is called the lim sup.

 3. Show: If $\sum_{k=1}^{\infty} \mu(A_k) < \infty$, then $\mu(C) = 0$.

 This result is known as the Borel-Cantelli Lemma.

2. Let K be the Cantor set and let $f : [0, 1] \to [0, 1]$ be the Cantor singular function constructed at the end of Ch. 2.1. For a finite union of pairwise disjoint half-open intervals in $[0, 1]$,

 \[A = \bigcup_{i=1}^{N} (a_i, b_i), \]

 we define

 \[\mu(A) = \sum_{i=1}^{N} f(b_i) - f(a_i). \]
1. Show that μ extends to a measure on $([0,1], \mathcal{L}([0,1]))$ with $\mu([0,1]) = 1$. Here, $\mathcal{L}([0,1])$ denotes the σ-algebra of Lebesgue-measurable subsets of $[0,1]$. Hint: You can use the Caratheodory Extension Theorem, which we proved in Exercises 1.3. Question 5d, or Prop 1.3.10. for this.

2. Show that $\mu(K^c) = 0$.

3. Show that $\mu(x) = 0$ for each $x \in [0,1]$.

μ is an example of a non-atomic singular measure on \mathbb{R} - it has all its mass on a set of Lebesgue measure 0 (singular), but each single point has measure 0 (non-atomic).

3. Let $f, g : [0,1] \to \mathbb{R}$ be defined by

$$ f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases} $$

and

$$ g(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q}, p, q \text{ relatively prime} \\ 0 & \text{if } x = 0 \text{ or } x \notin \mathbb{Q}. \end{cases} $$

1. Show that f and g are measurable.

2. Show that $\int_{[0,1]} f \, d\lambda = 0$ and $\int_{[0,1]} g \, d\lambda = 0$.

3. Show that f is nowhere continuous, and that g is continuous λ-almost everywhere on $[0,1]$.

4. Let (X, \mathcal{A}, μ) be a measure space, and let $f : X \to [0, +\infty]$ be measurable.

1. Suppose that f takes values only in \mathbb{N}_0. Show that

$$ \int_X f \, d\mu = \sum_{k=1}^{\infty} \mu(\{x \in X : f(x) \geq k\}). $$

2. Now fix $n \in \mathbb{N}$ and suppose that f takes values only in $\left\{ \frac{k}{2^n} : k \in \mathbb{N}_0 \right\}$. Show that

$$ \int_X f \, d\mu = \sum_{k=1}^{\infty} \frac{1}{2^n} \mu(\{x \in X : f(x) \geq \frac{k}{2^n}\}). $$

3. Show that in the general case of f taking values in $[0, +\infty]$,

$$ \int_X f \, d\mu = \int_{[0,\infty]} \mu(\{x \in X : f(x) \geq t\}) \, d\lambda(t). $$

Hint: Look at the proof of Prop. 2.1.8.

Please hand in on Monday, March 7, before the lecture.