Harmonic Morphisms from Lie Groups and Symmetric Spaces
- Some Existence Theory -

Sigmundur Gudmundsson

Department of Mathematics
Faculty of Science
Lund University

Max-Planck Institut - Bonn - 27 February 2020
Harmonic Morphisms

1. The Origins - Jacobi 1848
2. Riemannian Geometry - Fuglede 1978, Ishihara 1979
4. Existence?
Outline

1 Harmonic Morphisms
 • The Origins - Jacobi 1848
 • Riemannian Geometry - Fuglede 1978, Ishihara 1979
 • Geometric Motivation - Baird-Eells 1981
 • Existence ?

2 The Conjecture
 • The Conjecture
 • Relevant History
Outline

1 Harmonic Morphisms
 - The Origins - Jacobi 1848
 - Riemannian Geometry - Fuglede 1978, Ishihara 1979
 - Geometric Motivation - Baird-Eells 1981
 - Existence ?

2 The Conjecture
 - The Conjecture
 - Relevant History

3 Constructions by Eigenfamilies
 - Definition
 - Useful Machinery
 - The Classical Semisimple Lie Groups
Outline

1. Harmonic Morphisms
 - The Origins - Jacobi 1848
 - Riemannian Geometry - Fuglede 1978, Ishihara 1979
 - Geometric Motivation - Baird-Eells 1981
 - Existence ?

2. The Conjecture
 - The Conjecture
 - Relevant History

3. Constructions by Eigenfamilies
 - Definition
 - Useful Machinery
 - The Classical Semisimple Lie Groups

4. Constructions by Orthogonal Harmonic Families
 - Another Useful Machine
 - Symmetric Spaces G/K of Non-Compact Type
 - Nilpotent and Solvable Lie Groups
 - Symmetric Spaces U/K of Compact Type
 - Examples
 - Homogeneous Spaces of Positive Curvature
Harmonic Morphisms

The Origins - Jacobi 1848
Riemannian Geometry - Fuglede 1978, Ishihara 1979
Geometric Motivation - Baird-Eells 1981
Existence ?

The Conjecture
The Conjecture
Relevant History

Constructions by Eigenfamilies
Definition
Useful Machinery
The Classical Semisimple Lie Groups

Constructions by Orthogonal Harmonic Families
Another Useful Machine
Symmetric Spaces G/K of Non-Compact Type
Nilpotent and Solvable Lie Groups
Symmetric Spaces U/K of Compact Type
Examples
Homogeneous Spaces of Positive Curvature

Low-Dimensional Classifications

References
Definition 1.1 (Harmonic Morphisms (Jacobi 1848))

A map $\phi = u + iv : U \subset \mathbb{R}^3 \rightarrow \mathbb{C}$ is said to be a **harmonic morphism** if the composition $f \circ \phi$ with any **holomorphic** function $f : W \subset \mathbb{C} \rightarrow \mathbb{C}$ is **harmonic**.
Definition 1.1 (Harmonic Morphisms (Jacobi 1848))

A map \(\phi = u + iv : U \subset \mathbb{R}^3 \to \mathbb{C} \) is said to be a **harmonic morphism** if the composition \(f \circ \phi \) with any **holomorphic** function \(f : W \subset \mathbb{C} \to \mathbb{C} \) is harmonic.

Theorem 1.2 (Jacobi 1848)

A map \(\phi = u + iv : U \subset \mathbb{R}^3 \to \mathbb{C} \) is a harmonic morphism if and only if it is harmonic and horizontally (weakly) conformal i.e.

\[
\Delta u = \Delta v = 0, \quad \langle \nabla u, \nabla v \rangle = 0 \quad \text{and} \quad |\nabla u|^2 = |\nabla v|^2.
\]
Definition 1.1 (Harmonic Morphisms (Jacobi 1848))

A map \(\phi = u + iv : U \subset \mathbb{R}^3 \rightarrow \mathbb{C} \) is said to be a harmonic morphism if the composition \(f \circ \phi \) with any holomorphic function \(f : W \subset \mathbb{C} \rightarrow \mathbb{C} \) is harmonic.

Theorem 1.2 (Jacobi 1848)

A map \(\phi = u + iv : U \subset \mathbb{R}^3 \rightarrow \mathbb{C} \) is a harmonic morphism if and only if it is harmonic and horizontally (weakly) conformal i.e.

\[
\Delta u = \Delta v = 0, \quad \langle \nabla u, \nabla v \rangle = 0 \quad \text{and} \quad |\nabla u|^2 = |\nabla v|^2.
\]

Proof.

\[
\Delta(f \circ \phi) = \left[\frac{\partial f}{\partial z} \right] \cdot \Delta \phi + \left[\frac{\partial^2 f}{\partial z^2} \right] \cdot \langle \nabla \phi, \nabla \phi \rangle_\mathbb{C} = 0
\]
Theorem 1.3 (Jacobi 1848)

Let \(f, g : W \subset \mathbb{C} \rightarrow \mathbb{C} \) be holomorphic functions, then every local solution \(z : U \subset \mathbb{R}^3 \rightarrow \mathbb{C} \) to the equation

\[
\langle f(z(x)) \left[1 - g^2(z(x)), i(1 + g^2(z(x))), 2g(z(x)) \right], x \rangle_{\mathbb{C}} = 1
\]

is a harmonic morphism.
Theorem 1.3 (Jacobi 1848)

Let \(f, g : W \subset \mathbb{C} \to \mathbb{C} \) be holomorphic functions, then every local solution \(z : U \subset \mathbb{R}^3 \to \mathbb{C} \) to the equation

\[
\langle f(z(x)) \left[1 - g^2(z(x)), i(1 + g^2(z(x))), 2g(z(x)) \right], x \rangle \mathbb{C} = 1
\]

is a harmonic morphism.

Theorem 1.4 (Baird-Wood 1988)

Every harmonic morphism \(z : U \to \mathbb{C} \) defined locally on the Euclidean \(\mathbb{R}^3 \) is obtained this way.
Example 1.5 (The Outer Disc Example)

Let \(r \in \mathbb{R}^+ \) and choose \(g(z) = z \), \(f(z) = -1/2irz \) then we yield

\[
(x_1 - ix_2)z^2 - 2(x_3 + ir)z - (x_1 + ix_2) = 0
\]

with the two solutions

\[
z_r^\pm = \frac{-(x_3 + ir) \pm \sqrt{x_1^2 + x_2^2 + x_3^2 - r^2 + 2irx_3}}{x_1 - ix_2}.
\]
Definition 1.6 (Harmonic Morphisms (Fuglede 1978, Ishihara 1979))

A map \(\phi : (M^m, g) \to (N^n, h) \) between Riemannian manifolds is called a harmonic morphism if, for any harmonic function \(f : U \to \mathbb{R} \) defined on an open subset \(U \) of \(N \) with \(\phi^{-1}(U) \) non-empty, \(f \circ \phi : \phi^{-1}(U) \to \mathbb{R} \) is a harmonic function.
Definition 1.6 (Harmonic Morphisms (Fuglede 1978, Ishihara 1979))

A map $\phi : (M^m, g) \to (N^n, h)$ between Riemannian manifolds is called a harmonic morphism if, for any harmonic function $f : U \to \mathbb{R}$ defined on an open subset U of N with $\phi^{-1}(U)$ non-empty, $f \circ \phi : \phi^{-1}(U) \to \mathbb{R}$ is a harmonic function.

Theorem 1.7 (Fuglede 1978, Ishihara 1979)

A map $\phi : (M, g) \to (N, h)$ between Riemannian manifolds is a harmonic morphism if and only if it is harmonic and horizontally (weakly) conformal.
(Harmonicity)

For local coordinates x on (M, g) and y on (N, h), we have the non-linear system

$$
\tau(\phi) = \sum_{i,j=1}^{m} g^{ij} \left(\frac{\partial^2 \phi^\gamma}{\partial x_i \partial x_j} - \sum_{k=1}^{m} \hat{\Gamma}_{ij}^k \frac{\partial \phi^\gamma}{\partial x_k} + \sum_{\alpha, \beta=1}^{n} \Gamma_{\alpha \beta}^\gamma \phi \frac{\partial \phi^\alpha}{\partial x_i} \frac{\partial \phi^\beta}{\partial x_j} \right) \Bigg|_{x} = 0,
$$

where $\phi^\alpha = y_\alpha \circ \phi$ and $\hat{\Gamma}, \Gamma$ are the Christoffel symbols on M, N, resp.
Harmonic Morphisms
The Conjecture
Constructions by Eigenfamilies
Constructions by Orthogonal Harmonic Families
Low-Dimensional Classifications
References

The Origins - Jacobi 1848
Riemannian Geometry - Fuglede 1978, Ishihara 1979
Geometric Motivation - Baird-Eells 1981
Existence ?

(Harmonicity)

For local coordinates x on (M, g) and y on (N, h), we have the **non-linear** system

$$
\tau(\phi) = \sum_{i,j=1}^{m} g^{ij} \left(\frac{\partial^{2} \phi^{\gamma}}{\partial x_{i} \partial x_{j}} - \sum_{k=1}^{m} \hat{\Gamma}_{ij}^{k} \frac{\partial \phi^{\gamma}}{\partial x_{k}} + \sum_{\alpha,\beta=1}^{n} \Gamma_{\alpha\beta}^{\gamma} \circ \phi \frac{\partial \phi^{\alpha}}{\partial x_{i}} \frac{\partial \phi^{\beta}}{\partial x_{j}} \right) = 0,
$$

where $\phi^{\alpha} = y_{\alpha} \circ \phi$ and $\hat{\Gamma}, \Gamma$ are the Christoffel symbols on M, N, resp.

(Horizontal (weak) Conformality)

There exists a continuous function $\lambda : M \to \mathbb{R}_{0}^{+}$ such that for all $\alpha, \beta = 1, 2, \ldots, n$

$$
\sum_{i,j=1}^{m} g^{ij}(x) \frac{\partial \phi^{\alpha}}{\partial x_{i}}(x) \frac{\partial \phi^{\beta}}{\partial x_{j}}(x) = \lambda^{2}(x) h^{\alpha\beta}(\phi(x)).
$$

This is a first order **non-linear** system of $\left[\binom{n+1}{2} - 1\right]$ equations.
Theorem 1.8 (Baird, Eells 1981)

Let $\phi : (M, g) \rightarrow (N^2, h)$ be a horizontally conformal map from a Riemannian manifold to a surface. Then ϕ is harmonic if and only if its fibres are minimal at regular points ϕ.
Theorem 1.8 (Baird, Eells 1981)

Let $\phi : (M, g) \rightarrow (N^2, h)$ be a \textbf{horizontally conformal} map from a Riemannian manifold to a surface. Then ϕ is \textbf{harmonic} if and only if its fibres are \textbf{minimal} at regular points ϕ.

The problem is \textbf{invariant} under \textbf{isometries} on (M, g). If the codomain (N, h) is a surface ($n = 2$) then it is also invariant under \textbf{conformal changes} $\sigma^2 h$ of the metric on N^2. This means, at least for local studies, that (N^2, h) can be chosen to be the \textbf{standard complex plane} \mathbb{C}.
Example 1.9 (The Nilpotent Lie Group Nil3)

$$(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in \text{SL}_3(\mathbb{R}).$$

The left-invariant metric, with orthonormal basis

$$\{ X = \partial/\partial x, \ Y = \partial/\partial y, \ Z = \partial/\partial z \}$$

at the neutral element $e = (0, 0, 0)$, is given by

$$ds^2 = dx^2 + dy^2 + (dz - xdy)^2.$$
Example 1.9 (The Nilpotent Lie Group Nil^3)

\[(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in \text{SL}_3(\mathbb{R}).\]

The left-invariant metric, with orthonormal basis

\[\{ X = \partial/\partial x, \ Y = \partial/\partial y, \ Z = \partial/\partial z \} \]

at the neutral element $e = (0, 0, 0)$, is given by

\[ds^2 = dx^2 + dy^2 + (dz - xdy)^2.\]

(Baird, Wood 1990): Every local solution is a restriction of the globally defined harmonic morphism $\phi : \text{Nil}^3 \to \mathbb{C}$ with

\[\phi : \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mapsto x + iy.\]
Example 1.10 (The Solvable Lie Group Sol³)

\[(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix} \in SL_3(\mathbb{R}).\]

The left-invariant metric, with orthonormal basis

\[
\{ X = \partial/\partial x, \ Y = \partial/\partial y, \ Z = \partial/\partial z \} \]

at the neutral element \(e = (0, 0, 0)\), is given by

\[ds^2 = e^{2z} dx^2 + e^{-2z} dy^2 + dz^2.\]
Example 1.10 (The Solvable Lie Group Sol^3)

$$(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix} \in \text{SL}_3(\mathbb{R}).$$

The left-invariant metric, with orthonormal basis

$$\{ X = \partial/\partial x, \; Y = \partial/\partial y, \; Z = \partial/\partial z \}$$

at the neutral element $e = (0, 0, 0)$, is given by

$$ds^2 = e^{2z} dx^2 + e^{-2z} dy^2 + dz^2.$$

(Baird, Wood 1990): No solutions exist, not even locally.

$$e^{-2z} \frac{\partial^2 \phi}{\partial x^2} + e^{2z} \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0,$$

$$e^{-2z} \left(\frac{\partial \phi}{\partial x} \right)^2 + e^{2z} \left(\frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 = 0.$$
Conjecture 1 (SG 1995)

Let \((M, g)\) be an irreducible Riemannian symmetric space of dimension \(m \geq 2\). For each point \(p \in M\) there exists a non-constant complex-valued harmonic morphism \(\phi : U \subset M \to \mathbb{C}\) defined on an open neighbourhood \(U\) of \(p\). If \(M\) is of non-compact type then the domain \(U\) can be chosen to be the whole of \(M\).

Definition 2.1 (Symmetric Space)

A Riemannian manifold \((M, g)\) is said to be a symmetric space if for each point \(p \in M\) there exists a global geodesic reflective isometry \(\sigma : (M, g) \to (M, g)\) i.e. such that its differential \(d\sigma_p : T_p M \to T_p M\) at \(p\) satisfies

\[
 d\sigma_p = -\text{id}_{T_p M}.
\]
Baird-Eells (1981): $S^3 = \text{SO}(1+3)/\text{SO}(1) \times \text{SO}(3)$. The Hopf map $\phi : S^3 \to S^2 \cong \mathbb{C}$ with

$$\phi : (x_1, x_2, x_3, x_4) \mapsto (x_1 + ix_2)/(x_3 + ix_4).$$

Baird-Wood (1989): $H^3 = \text{SO}_o(1, 3)/\text{SO}(1) \times \text{SO}(3)$

Wood (1991): $S^4 = \text{SO}(1+4)/\text{SO}(1) \times \text{SO}(4)$

Baird (1992): $H^4 = \text{SO}_o(1, 4)/\text{SO}(1) \times \text{SO}(4)$

SG (1994): $\mathbb{C}P^q = \text{U}(1+q)/\text{U}(1) \times \text{U}(q)$

SG (1994): $\mathbb{H}P^q = \text{Sp}(1+q)/\text{Sp}(1) \times \text{Sp}(q)$

SG (1995): $H^{2n+1} = \text{SO}_o(1, 2n+1)/\text{SO}(1) \times \text{SO}(2n+1)$. The ”dual” Hopf map $\phi : H^3 \to \mathbb{C}$ with

$$\phi : (x_1, x_2, x_3, x_4) \mapsto (x_1 + ix_2)/(x_3 - x_4).$$
Definition 3.1 (The Laplacian - The Conformality Operator)

For complex-valued functions $\phi, \psi : (M, g) \to \mathbb{C}$ on a Riemannian manifold we have the complex-valued \textbf{Laplacian} $\tau(\phi)$ and the symmetric bilinear \textbf{conformality operator} κ given by

$$\kappa(\phi, \psi) = g(\nabla \phi, \nabla \psi).$$
Definition 3.1 (The Laplacian - The Conformality Operator)

For complex-valued functions \(\phi, \psi : (M, g) \to \mathbb{C} \) on a Riemannian manifold we have the complex-valued Laplacian \(\tau(\phi) \) and the symmetric bilinear conformality operator \(\kappa \) given by

\[
\kappa(\phi, \psi) = g(\nabla\phi, \nabla\psi).
\]

The harmonicity and the horizontal conformality of \(\phi : (M, g) \to \mathbb{C} \) are then given by the following relations

\[
\tau(\phi) = 0 \quad \text{and} \quad \kappa(\phi, \phi) = 0.
\]
Definition 3.1 (The Laplacian - The Conformality Operator)

For complex-valued functions $\phi, \psi : (M, g) \rightarrow \mathbb{C}$ on a Riemannian manifold we have the complex-valued **Laplacian** $\tau(\phi)$ and the symmetric bilinear **conformality operator** κ given by

$$\kappa(\phi, \psi) = g(\nabla\phi, \nabla\psi).$$

The **harmonicity** and the **horizontal conformality** of $\phi : (M, g) \rightarrow \mathbb{C}$ are then given by the following relations

$$\tau(\phi) = 0 \quad \text{and} \quad \kappa(\phi, \phi) = 0.$$

Definition 3.2 (Eigenfamilies)

A set $\mathcal{E} = \{\phi_\alpha : (M, g) \rightarrow \mathbb{C} \mid \alpha \in I\}$ of complex-valued functions is called an **eigenfamily** on (M, g) if there exist complex numbers $\lambda, \mu \in \mathbb{C}$ such that for all $\phi, \psi \in \mathcal{E}$

$$\tau(\phi) = \lambda\phi \quad \text{and} \quad \kappa(\phi, \psi) = \mu\phi\psi.$$
Theorem 3.3 (SG, Sakovich 2008)

Let \((M, g)\) be a Riemannian manifold and \(\mathcal{E} = \{\phi_1, \ldots, \phi_n\}\) be a finite eigenfamily of complex-valued functions on \(M\). If \(P, Q : \mathbb{C}^n \to \mathbb{C}\) are linearly independent homogeneous polynomials of the same positive degree then the quotient

\[
 P(\phi_1, \ldots, \phi_n)/Q(\phi_1, \ldots, \phi_n)
\]

is a non-constant harmonic morphism on the open and dense subset

\[
 \{p \in M \mid Q(\phi_1(p), \ldots, \phi_n(p)) \neq 0\}.
\]
Theorem 3.3 (SG, Sakovich 2008)

Let \((M, g)\) be a Riemannian manifold and \(\mathcal{E} = \{\phi_1, \ldots, \phi_n\}\) be a finite eigenfamily of complex-valued functions on \(M\). If \(P, Q : \mathbb{C}^n \to \mathbb{C}\) are linearly independent homogeneous polynomials of the same positive degree then the quotient

\[
P(\phi_1, \ldots, \phi_n)/Q(\phi_1, \ldots, \phi_n)
\]

is a non-constant harmonic morphism on the open and dense subset

\[
\{p \in M \mid Q(\phi_1(p), \ldots, \phi_n(p)) \neq 0\}.
\]

The authors apply this machinery to construct solutions on the classical semisimple Lie groups \(SO(n), SU(n), Sp(n), SL_n(\mathbb{R}), SU^*(2n)\) and \(Sp(n, \mathbb{R})\) equipped with their standard Riemannian metrics.

They also develop a duality principle and use this to construct solutions from the semisimple Lie groups \(SO(n), SU(n), Sp(n), SL_n(\mathbb{R}), SU^*(2n), Sp(n, \mathbb{R}), SO^*(2n), SO(p, q), SU(p, q)\) and \(Sp(p, q)\) equipped with their standard dual semi-Riemannian metrics.
 Equip the special orthogonal group

\[\text{SO}(n) = \{ x \in \text{GL}_n(\mathbb{R}) \mid x^t \cdot x = I_n, \ \det x = 1 \} \]

with the standard Riemannian metric \(g \) induced by the Euclidean scalar product \(g(X, Y) = \text{trace}(X^t \cdot Y) \) on the Lie algebra

\[\mathfrak{so}(n) = \{ X \in \mathfrak{gl}_n(\mathbb{R}) \mid X^t + X = 0 \}. \]
Equip the special orthogonal group

\[
\text{SO}(n) = \{ x \in \text{GL}_n(\mathbb{R}) \mid x^t \cdot x = I_n, \det x = 1 \}
\]

with the standard Riemannian metric \(g \) induced by the Euclidean scalar product \(g(X, Y) = \text{trace}(X^t \cdot Y) \) on the Lie algebra

\[
\text{so}(n) = \{ X \in \text{gl}_n(\mathbb{R}) \mid X^t + X = 0 \}.
\]

Lemma 3.4 (SG, Sakovich 2008)

For \(1 \leq i, j \leq n \), let \(x_{ij} : \text{SO}(n) \to \mathbb{R} \) be the real valued coordinate functions given by \(x_{ij} : x \mapsto \langle e_i, x \cdot e_j \rangle \) where \(\{ e_1, \ldots, e_n \} \) is the canonical basis for \(\mathbb{R}^n \). Then the following relations hold

\[
\tau(x_{ij}) = -\frac{(n-1)}{2} x_{ij}, \quad \kappa(x_{ij}, x_{kl}) = -\frac{1}{2} (x_{il} x_{kj} - \delta_{jl} \delta_{ik}).
\]
Theorem 3.5 (SG, Sakovich 2008)

Let \(p \in \mathbb{C}^n \) be a non-zero isotropic element i.e. \(\langle p, p \rangle_{\mathbb{C}} = 0 \). Then the following is an eigenfamily on \(\text{SO}(n) \)

\[\mathcal{E}_p = \{ \phi_a : \text{SO}(n) \to \mathbb{C} \mid \phi_a(x) = \langle p, x \cdot a \rangle_{\mathbb{C}}, \ a \in \mathbb{C}^n \} . \]
Theorem 3.5 (SG, Sakovich 2008)

Let \(p \in \mathbb{C}^n \) be a non-zero isotropic element i.e. \(\langle p, p \rangle_\mathbb{C} = 0 \). Then the following is an eigenfamily on \(\text{SO}(n) \)

\[
\mathcal{E}_p = \{ \phi_a : \text{SO}(n) \to \mathbb{C} \mid \phi_a(x) = \langle p, x \cdot a \rangle_\mathbb{C}, \ a \in \mathbb{C}^n \}.
\]

Example 3.6 (Eigenfamilies on \(\text{SO}(4) \))

For \(z, w \in \mathbb{C} \), let \(p \) be the isotropic element of \(\mathbb{C}^4 \) given by

\[
p(z, w) = (1 + zw, i(1 - zw), i(z + w), z - w).
\]

This gives us the complex 2-dimensional deformation of eigenfamilies \(\mathcal{E}_p \) each consisting of functions \(\phi_a : \text{SO}(4) \to \mathbb{C} \) with

\[
\phi_a(x) = (1 + zw)(x_{11}a_1 + x_{21}a_2 + x_{31}a_3 + x_{41}a_4) \\
+ i(1 - zw)(x_{12}a_1 + x_{22}a_2 + x_{32}a_3 + x_{42}a_4) \\
+ i(z + w)(x_{13}a_1 + x_{23}a_2 + x_{33}a_3 + x_{43}a_4) \\
+ (z - w)(x_{14}a_1 + x_{24}a_2 + x_{34}a_3 + x_{44}a_4).
\]
Definition 4.1 (Orthogonal Harmonic Family)

A set \(\Omega = \{ \phi_\alpha : (M, g) \to \mathbb{C} \mid \alpha \in I \} \) of complex-valued functions is called an orthogonal harmonic family on \((M, g)\) if for all \(\phi, \psi \in \Omega \)

\[\tau(\phi) = 0 \quad \text{and} \quad \kappa(\phi, \psi) = 0. \]
Definition 4.1 (Orthogonal Harmonic Family)

A set $\Omega = \{\phi_\alpha : (M, g) \rightarrow \mathbb{C} \mid \alpha \in I\}$ of complex-valued functions is called an orthogonal harmonic family on (M, g) if for all $\phi, \psi \in \Omega$

$$\tau(\phi) = 0 \quad \text{and} \quad \kappa(\phi, \psi) = 0.$$

Example 4.2

Let $\Omega = \{\phi_\alpha : (M, g, J) \rightarrow \mathbb{C} \mid \alpha \in I\}$ be a collection of holomorphic functions on a Kähler manifold. Then Ω is an orthogonal harmonic family.
Theorem 4.3 (SG 1997)

Let \((M, g)\) be a Riemannian manifold and \(U\) be an open subset of \(\mathbb{C}^n\) containing the image of \(\Phi = (\phi_1, \ldots, \phi_n) : M \to \mathbb{C}^n\). Further let

\[
H = \{ F_\alpha : U \to \mathbb{C} \mid \alpha \in I \}
\]

be a collection of holomorphic functions defined on \(U\). If the finite set

\[
\Omega = \{ \phi_k : (M, g) \to \mathbb{C} \mid k = 1, \ldots, n \}
\]

is an orthogonal harmonic family on \((M, g)\) then

\[
\Omega_H = \{ \psi : M \to \mathbb{C} \mid \psi = F(\phi_1, \ldots, \phi_n), \ F \in H \}
\]

is again an orthogonal harmonic family.
Let \((M, g)\) be an irreducible Riemannian \textbf{symmetric space} of \textbf{non-compact} type presented as the quotient \(G/K\) where \(G\) a connected semisimple Lie group and \(K\) its maximal compact subgroup.
Let \((M, g)\) be an irreducible Riemannian **symmetric space** of **non-compact** type presented as the quotient \(G/K\) where \(G\) a connected semisimple Lie group and \(K\) its maximal compact subgroup.

Let \(G = NAK\) be the **Iwasawa decomposition** of \(G\), where \(N\) is nilpotent and \(A\) is abelian.
Let \((M, g)\) be an irreducible Riemannian \textbf{symmetric space} of \textbf{non-compact} type presented as the quotient \(G/K\) where \(G\) a connected semisimple Lie group and \(K\) its maximal compact subgroup.

Let \(G = NAK\) be the \textbf{Iwasawa decomposition} of \(G\), where \(N\) is \textbf{nilpotent} and \(A\) is \textbf{abelian}.

\textbf{Fact 4.4 (solvable Lie group - rank)}

\begin{quote}
\textit{The non-compact symmetric space} \((M, g)\) \textit{can be identified with the solvable subgroup} \(S = NA\) \textit{of} \(G\) \textit{and its rank} \(r\) \textit{is the dimension of abelian subgroup} \(A\).
\end{quote}
Let \((M, g)\) be an irreducible Riemannian symmetric space of non-compact type presented as the quotient \(G/K\) where \(G\) a connected semisimple Lie group and \(K\) its maximal compact subgroup.

Let \(G = NAK\) be the Iwasawa decomposition of \(G\), where \(N\) is nilpotent and \(A\) is abelian.

Fact 4.4 (solvable Lie group - rank)

The non-compact symmetric space \((M, g)\) can be identified with the solvable subgroup \(S = NA\) of \(G\) and its rank \(r\) is the dimension of abelian subgroup \(A\).

Let \(\mathfrak{s}, \mathfrak{n}, \mathfrak{a}\) be the Lie algebras of \(S, N, A\), respectively. For this situation we have \(\mathfrak{s} = \mathfrak{a} + \mathfrak{n} = \mathfrak{a} + [\mathfrak{s}, \mathfrak{s}]\), hence

\[\mathfrak{a} = \mathfrak{s}/[\mathfrak{s}, \mathfrak{s}]\.]
Let G be a connected and simply connected Lie group with Lie algebra \mathfrak{g}. Then the natural projection $\pi : \mathfrak{g} \to \mathfrak{a} \cong \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ to the abelian algebra \mathfrak{a} is a Lie algebra homomorphism inducing a **natural group epimorphism** $\Phi : G \to \mathbb{R}^d$ with $d = \dim \mathfrak{a}$.
Let G be a connected and simply connected Lie group with Lie algebra \mathfrak{g}. Then the natural projection $\pi : \mathfrak{g} \to \mathfrak{a} \cong \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ to the abelian algebra \mathfrak{a} is a Lie algebra homomorphism inducing a **natural group epimorphism** $\Phi : G \to \mathbb{R}^d$ with $d = \dim \mathfrak{a}$.

Fact 4.5 (semisimple - solvable - nilpotent)

*If the group G is **semisimple** then $d = 0$, if G is **solvable** then $d \geq 1$ and if G is **nilpotent** then $d \geq 2$.***
Let G be a connected and simply connected Lie group with Lie algebra \mathfrak{g}. Then the natural projection $\pi : \mathfrak{g} \to \mathfrak{a} \cong \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ to the abelian algebra \mathfrak{a} is a Lie algebra homomorphism inducing a **natural group epimorphism** $\Phi : G \to \mathbb{R}^d$ with $d = \dim \mathfrak{a}$.

Fact 4.5 (semisimple - solvable - nilpotent)

*If the group G is **semisimple** then $d = 0$, if G is **solvable** then $d \geq 1$ and if G is **nilpotent** then $d \geq 2$.***

Equip \mathbb{R}^d with its standard Euclidean metric and the Lie group G with a left-invariant Riemannian metric g such that the natural group epimorphism $\Phi : G \to \mathbb{R}^d$ is a **Riemannian submersion**. Then the kernel $[\mathfrak{g}, \mathfrak{g}]$ of the linear map $\pi : \mathfrak{g} \to \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ generates a left-invariant Riemannian foliation \mathcal{V} on (G, g) with orthogonal distribution $\mathcal{H} = [\mathfrak{g}, \mathfrak{g}]^\perp$.
Theorem 4.6 (SG, Svensson 2009)

Let \(\mathcal{B} = \{X_1, \ldots, X_d\} \) be an ONB for the horizontal subspace \([\mathfrak{g}, \mathfrak{g}]^\perp\) of \(\mathfrak{g} \) and \(\xi \in \mathbb{C}^d \) be given by \(\xi = (\text{trace ad}_{X_1}, \ldots, \text{trace ad}_{X_d}) \). For a maximal isotropic subspace \(V \) of \(\mathbb{C}^d \) put

\[
V_\xi = \{v \in V \mid \langle \xi, v \rangle_{\mathbb{C}} = 0\}.
\]

If the real dimension of the isotropic subspace \(V_\xi \) is at least 2 then

\[
\Omega = \{\phi_v(x) = \langle \Phi(x), v \rangle_{\mathbb{C}} \mid v \in V_\xi\}
\]

is an orthogonal harmonic family on \((G, \mathfrak{g})\).
Theorem 4.6 (SG, Svensson 2009)

Let $\mathcal{B} = \{X_1, \ldots, X_d\}$ be an ONB for the horizontal subspace $[g, g]^\perp$ of g and $\xi \in \mathbb{C}^d$ be given by $\xi = (\text{trace ad}_{X_1}, \ldots, \text{trace ad}_{X_d})$. For a maximal isotropic subspace V of \mathbb{C}^d put

$$V_\xi = \{v \in V \mid \langle \xi, v \rangle_{\mathbb{C}} = 0\}.$$

If the real dimension of the isotropic subspace V_ξ is at least 2 then

$$\Omega = \{\phi_v(x) = \langle \Phi(x), v \rangle_{\mathbb{C}} \mid v \in V_\xi\}$$

is an orthogonal harmonic family on (G, g).

Proof.

The tension field of natural group epimorphism $\Phi : G \to \mathbb{R}^d$ satisfies

$$\tau(\Phi)(p) = \sum_{k=1}^{d} (\text{trace ad}_{X_k})d\Phi_e(X_k).$$
Example 4.7

For the nilpotent Riemannian Lie group

\[
N_n = \begin{cases}
(1 \quad x_{12} \quad \cdots \quad x_{1,n-1} \quad x_{1n}) \\
0 \quad 1 \quad \ddots \quad \vdots \\
\vdots \quad \ddots \quad \ddots \quad \vdots \\
\vdots \quad \ddots \quad 1 \quad x_{n-1,n} \\
0 \quad \cdots \quad \cdots \quad 0 \quad 1
\end{cases} \quad \in \text{SL}_n(\mathbb{R}) \mid x_{ij} \in \mathbb{R}
\]

the natural group epimorphism \(\Phi : N_n \rightarrow \mathbb{R}^{n-1} \) is given by

\[
\Phi(x) = (x_{12}, \ldots, x_{n-1,n})
\]

and the vector \(\xi \in \mathbb{C}^n \) satisfies \(\xi = 0 \).
Example 4.8

For the **solvable** Riemannian Lie group

\[
S_n = \left\{ \begin{pmatrix}
 e^{t_1} & x_{12} & \cdots & x_{1,n-1} & x_{1n} \\
 0 & e^{t_2} & \cdots & x_{2,n-1} & x_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & 0 & e^{t_{n-1}} & x_{n-1,n} \\
 0 & \cdots & 0 & 0 & e^{t_n}
\end{pmatrix} \in \text{GL}_n(\mathbb{R}) \mid x_{ij}, t_i \in \mathbb{R}\right\}
\]

the **natural group epimorphism** \(\Phi : S_n \rightarrow \mathbb{R}^n \) is given by

\[
\Phi(x) = (t_1, t_2, \ldots, t_n)
\]

and the vector \(\xi \in \mathbb{C}^n \) satisfies

\[
\xi = ((n + 1) - 2, (n + 1) - 4, \ldots, (n + 1) - 2n).
\]
As an immediate consequence of Theorem 4.6 we now have the existence of globally defined harmonic morphisms from any simply connected symmetric space G/K of non-compact type and rank $r \geq 3$.

With a series of other additional methods we have the following result.

Theorem 4.9 (SG, Svensson 2009)

Let (M,g) be an irreducible Riemannian symmetric space of non-compact type other than $G^*/SO(4)$. Then there exists a non-constant globally defined complex-valued harmonic morphism $\phi : M \to \mathbb{C}$.
This can be extended to the following result.

Theorem 4.10 (SG, Svensson 2009)

Let \((M, g)\) be an irreducible Riemannian **symmetric space** other than \(G_2^*/SO(4)\) or its compact dual \(G_2/SO(4)\). Then for each point \(p \in M\) there exists a non-constant complex-valued **harmonic morphism** \(\phi : U \rightarrow \mathbb{C}\) defined on an open neighbourhood \(U\) of \(p\). If the space \((M, g)\) is of non-compact type then the domain \(U\) can be chosen to be the whole of \(M\).
This can be extended to the following result.

Theorem 4.10 (SG, Svensson 2009)

Let \((M, g)\) be an irreducible Riemannian **symmetric space** other than \(G_2^*/SO(4)\) or its compact dual \(G_2/\text{SO}(4)\). Then for each point \(p \in M\) there exists a non-constant complex-valued **harmonic morphism** \(\phi : U \to \mathbb{C}\) defined on an open neighbourhood \(U\) of \(p\). If the space \((M, g)\) is of non-compact type then the domain \(U\) can be chosen to be the whole of \(M\).

An essential tool is the following **Duality Principle**:

Theorem 4.11 (SG, Svensson 2006)

Let \(\mathcal{F}\) be a family of local maps \(\phi : W \subset G/K \to \mathbb{C}\) and \(\mathcal{F}^*\) be the dual family consisting of the local maps \(\phi^* : W^* \subset U/K \to \mathbb{C}\). Then \(\mathcal{F}^*\) is a local orthogonal harmonic family on \(U/K\) if and only if \(\mathcal{F}\) is a local orthogonal harmonic family on \(G/K\).
The Duality Principle explains the following.

Example 4.12 (Baird, Eells 1981)

The map \(\phi : U \subset S^3 \subset \mathbb{R}^4 = \mathbb{C}^2 \to \mathbb{C} \) given by

\[
\phi : (x_1, x_2, x_3, x_4) \mapsto \frac{x_1 + ix_2}{x_3 + ix_4}
\]

is a locally defined harmonic morphism.
The **Duality Principle** explains the following.

Example 4.12 (Baird, Eells 1981)

The map \(\phi : U \subset S^3 \subset \mathbb{R}^4 = \mathbb{C}^2 \rightarrow \mathbb{C} \) given by

\[
\phi : (x_1, x_2, x_3, x_4) \mapsto \frac{x_1 + ix_2}{x_3 + ix_4}
\]

is a **locally defined** harmonic morphism.

Example 4.13 (SG 1996)

The map \(\phi : H^3 \subset \mathbb{R}_1^4 \rightarrow \mathbb{C} \) given by

\[
\phi : (x_1, x_2, x_3, x_4) \mapsto \frac{x_1 + ix_2}{x_3 - x_4}
\]

is a **globally defined** harmonic morphism.
Our existence result for symmetric spaces has the following interesting consequence:

Theorem 4.14 (SG, Svensson 2013)

Let \((M, g)\) *be a Riemannian homogeneous space of positive curvature other than the Berger space* \(\text{Sp}(2)/\text{SU}(2)\). *Then* \(M\) *admits local complex-valued harmonic morphisms.*
Fact 5.1

Every Riemannian homogeneous space \((M, g)\) of dimension 3 or 4 is either symmetric or a Lie group with a left-invariant metric.
Fact 5.1

Every Riemannian homogeneous space \((M, g)\) of dimension 3 or 4 is either symmetric or a Lie group with a left-invariant metric.

(SG, Svensson 2011): Give a classification for 3-dimensional Riemannian Lie groups admitting solutions. Find a continuous family of groups, containing \(\text{Sol}^3\), not carrying any left-invariant metric admitting complex-valued harmonic morphisms.
Fact 5.1

Every Riemannian homogeneous space (M, g) of dimension 3 or 4 is either symmetric or a Lie group with a left-invariant metric.

(SG, Svensson 2011): Give a classification for 3-dimensional Riemannian Lie groups admitting solutions. Find a continuous family of groups, containing Sol^3, not carrying any left-invariant metric admitting complex-valued harmonic morphisms.

(SG, Svensson 2013): Give a classification for 4-dimensional Riemannian Lie groups admitting left-invariant solutions. Most of the solutions constructed are NOT holomorphic with respect to any (integrable) Hermitian structure.
Fact 5.1

Every Riemannian homogeneous space \((M, g)\) of dimension 3 or 4 is either symmetric or a Lie group with a left-invariant metric.

(SG, Svensson 2011): Give a classification for 3-dimensional Riemannian Lie groups admitting solutions. Find a continuous family of groups, containing \(\text{Sol}^3\), not carrying any left-invariant metric admitting complex-valued harmonic morphisms.

(SG, Svensson 2013): Give a classification for 4-dimensional Riemannian Lie groups admitting left-invariant solutions. Most of the solutions constructed are NOT holomorphic with respect to any (integrable) Hermitian structure.

(SG 2016): Gives a large collection of 5-dimensional Riemannian Lie groups admitting left-invariant solutions.

