The Bibliography of Harmonic Morphisms


http://www.matematik.lu.se/matematiklu/personal/sigma/harmonic/bibliography.html


LIST OF PUBLICATIONS

(ordered by date of submission [dd.mm.yyyy]) (version 1.0665 [16.11.2016])
  1. C. G. J. Jacobi,
    Über eine Lösung der partiellen Differentialgleichung $\Delta(V)=0$,
    J. Reine Angew. Math. 36 (1848), 113-134.
    [10.07.1847]

  2. P. Lévy,
    Processus Stochastique et Movement Brownien,
    Gauthier-Villars (1948).

  3. F. W. Gehring, H. Haahti,
    The transformations which preserve the harmonic functions,
    Ann. Acad. Sci. Fenn. A 293 (1960), 3-12.
    [13.05.1960]

  4. C. Constantinescu, A. Cornea,
    Potential theory on harmonic spaces,
    Springer (1965).

  5. B. Watson,
    Manifold maps commuting with the Laplacian,
    J. Differential Geometry 8 (1973), 85-94.
    [03.04.1972]

  6. B. Watson,
    Almost Hermitian submersions,
    J. Differential Geometry 11 (1976), 147-165.
    [25.10.1974]

  7. J. Eells, J. C. Wood,
    Restrictions on harmonic maps of surfaces,
    Topology 15 (1976), 263-266.
    [10.09.1975]

  8. C.B. Collins,
    Complex potential equations I. A technique for solutions,
    Math. Proc. Camb. Phil. Soc. 80 (1976), 165-187.
    [16.09.1975]

  9. B. Fuglede,
    Harmonic morphisms between Riemannian manifolds,
    Ann. Inst. Fourier 28 (1978), 107-144.
    [01.02.1977]

  10. A. Bernard, E. A. Campbell, A. M. Davie,
    Brownian motion and generalized analytic and inner functions,
    Ann. Inst. Fourier 29 (1979), 207-228.
    [29.07.1977]

  11. T. Ishihara,
    A mapping of Riemannian manifolds which preserves harmonic functions,
    J. Math. Kyoto Univ. 19 (1979), 215-229.
    [07.09.1977]

  12. B. Fuglede,
    Harmonic morphisms between Riemannian manifolds,
    in: Elliptische Differentialgleichungen, Rostock 1977.
    Mathematische Gesellschaft der DDR, BbG 052/12/78, 97-104.

  13. B. Fuglede,
    Harnack sets and openness of harmonic morphisms,
    Math. Ann. 241 (1979), 181-186.
    [20.11.1978]

  14. B. Fuglede,
    Harmonic Morphisms,
    in: Complex Analysis, Joensuu 1978,
    Lecture Notes in Math. 747, Springer (1979), 123-131.

  15. P. Baird, J. Eells,
    A conservation law for harmonic maps,
    in: Geometry Symposium Utrecht 1980,
    Lecture Notes in Math. 894, Springer (1981), 1-25.

  16. L. Bérard Bergery, J.-P. Bourguignon,
    Laplacians and Riemannian submersions with totally geodesic fibres,
    Illinois J. Math. 26 (1982), 181-200.
    [25.02.1981]

  17. B. Fuglede,
    A criterion of non-vanishing differential of a smooth map,
    Bull. London Math. Soc. 14 (1982), 98-102.
    [30.06.1981]

  18. P. Baird,
    Harmonic maps with symmetry, harmonic morphisms, and deformations of metrics,
    Doctoral thesis, University of Warwick.
    [1981]

  19. R. W. R. Darling,
    Martingales in manifolds - definition, examples and behaviour under maps,
    in: Séminaire de Probabilités XVI 1980/81. Supplément: Géométrie Différentielle Stochastique,
    Lecture Notes in Math. 921, Springer (1982), 217-236.

  20. L. Csink, B. Öksendal,
    Stochastic harmonic morphisms: Functions mapping the paths of one diffusion into the paths of another,
    Ann. Inst. Fourier 33 2 (1983), 219-240.
    [07.06.1982]

  21. J. Eells,
    On equivariant harmonic maps,
    Proceedings of the 1981 Shanghai symposium on differential geometry and differential equations (Shanghai/Hefei, 1981), 55-73,
    Science Press, Beijing (1984).
    [??.??.????]

  22. P. Baird,
    Harmonic maps with symmetry, harmonic morphisms and deformations of metrics,
    Research Notes in Math. 87, Pitman (1983).

  23. J. Eells, L. Lemaire,
    Selected topics in harmonic maps,
    CBMS Regional Conf. Ser. in Math. 50, AMS (1983).

  24. G. Gigante,
    A note on harmonic morphisms,
    preprint, University of Camerino (1983).

  25. S. Nualtaranee,
    A note on functions that preserve harmonicity in the plane,
    SEA Bull. Math. 8 (1984), 65-67.
    [??.??.????]

  26. B. Fuglede,
    Value distribution of harmonic and finely harmonic morphisms and applications in complex analysis,
    Ann. Acad. Sci. Fennicae, Ser. A. I. 11, (1986) 111-135.
    [27.07.1984]

  27. P. Baird,
    Harmonic morphisms onto Riemann surfaces and generalized analytic functions,
    Ann. Inst. Fourier 37 (1987), 135-173.
    [27.12.1984]

  28. P. Baird,
    Harmonic morphisms onto Riemann surfaces---some classification results,
    in: Miniconference on Nonlinear Analysis, Canberra 1984,
    Proc. Centre Math. Anal. Austral. Nat. Univ., 8, 91-100.

  29. J. C. Wood,
    The Gauss map of a harmonic morphism
    in: Differential geometry, Santiago de Compostela 1984
    Research Notes in Math. 131, 149-155 Pitman (1985).

  30. R. Banuelos, B. Öksendal,
    Exit times for elliptic diffusions and BMO,
    Proc. Edinb. Math. Soc. 30 (1987), 273-287.
    [11.10.1985]

  31. P. Baird,
    The Gauss map of a submersion,
    in: Miniconference on geometry and partial differential equations, Canberra 1985,
    Proc. Centre Math. Anal. Austral. Nat. Univ. 10, (1986), 8-24.

  32. J. C. Wood,
    Harmonic morphisms, foliations and Gauss maps,
    Contemporary Mathematics 49 (1986), 145-184.

  33. B. Fuglede,
    Finely holomorphic functions and finely harmonic morphisms,
    Aequ. Math. 34 (1987), 167-173.
    [03.11.1986]

  34. P. Baird, J. C. Wood,
    Bernstein theorems for harmonic morphisms from R3 and S3,
    Math.Ann. 280 (1988), 579-603.
    [01.03.1987]

  35. J. Eells, L. Lemaire,
    Another report on harmonic maps,
    Bull. London Math. Soc. 20, (1988), 385-524.

  36. H. Urakawa,
    Spectral geometry of the second variation operator of harmonic maps,
    Illinois J. Math. 33 (1989), 250-267.
    [06.04.1987]

  37. P. Baird,
    Bernstein theorems for harmonic morphisms,
    in: Miniconference on geometry and partial differential equations 2, Canberra 1986,
    Proc. Centre Math. Anal. Austral. Nat. Univ. 12, (1987) 17-23.

  38. P. Baird,
    Bernstein theorems for harmonic morphisms,
    in: Harmonic mappings, twistors and $\sigma$-models ed. E P. Gauduchon,
    World Scientific, Singapore (1988), 3-13.

  39. J.-M. Coron, R. Gulliver,
    Minimizing p-harmonic maps into spheres,
    J. Reine Angew. Math. 401 (1989), 82-100.
    [23.06.1988]

  40. J. Eells, A. Ratto,
    Harmonic maps between spheres and ellipsoids,
    Internat. J. Maths. 1 (1990), 1-27.
    [14.11.1988]

  41. P. Baird,
    Harmonic morphisms and circle actions on 3- and 4-manifolds,
    Ann. Inst. Fourier 40 (1990), 177-212.
    [12.12.1988]

  42. L. Csink, P. J. Fitzsimmons, B. Öksendal,
    A stochastic interpretation of harmonic morphisms,
    Math. Ann. 287 (1990), 1-18.
    [18.5.1989]

  43. F. Hélein,
    Applications harmoniques et applications minimisantes entre variétés riemanniennes,
    Doctoral thesis, Ecole Polytechnique
    [1989]

  44. P. Baird, J. C. Wood,
    Harmonic morphisms and conformal foliations by geodesics of three-dimensional space forms,
    J. Austral. Math. Soc. 51 (1991), 118-153.
    [15.10.1989]

  45. A. Kasue, T. Washio,
    Growth of equivariant harmonic maps and harmonic morphisms,
    Osaka J. Math. 27 (1990), 899-928.
    [04.12.1989]

  46. A. Kasue, T. Washio,
    Errata to ''Growth of equivariant harmonic maps and harmonic morphisms'',
    Osaka J. Math. 29 (1992), 419-420.
    [02.09.1991]

  47. K.P. Tod,
    Harmonic morphisms and mini-twistor spaces,
    in: Further Advances in Twistor Theory: Vol. II:
    Integrable systems, conformal geometry and gravitation,
    eds. L.J. Mason, L.P. Hughston and P.Z. Kobak,
    Pitman Research Notes in Math. 232, Longman (1995), 45-46.
    (Originally appeared in Twistor Newsletter 29 (1989))

  48. S. Gudmundsson,
    On the geometry of harmonic morphisms,
    Math. Proc. Cambridge Philos. Soc. 108 (1990), 461-466.
    [12.02.1990]

  49. P. Baird, A. Ratto,
    Conservation laws, equivariant harmonic maps and harmonic morphisms,
    Proc. London Math. Soc. 64 (1992),197-224.
    [22.05.1990]

  50. J. C. Wood,
    Harmonic morphisms, conformal foliations and Seifert fibre spaces,
    in: Geometry of Low-Dimensional Manifolds:1, LMS Lecture Notes Series 150,
    Cambridge University Press (1990), 247-259.

  51. P. Baird, J. C. Wood,
    Harmonic morphisms, Seifert fibre spaces and conformal foliations,
    Proc. London Math. Soc. 64 (1992), 170-197.
    [16.07.1990]

  52. P. Baird,
    A Bochner technique for harmonic mappings from a 3-manifold to a surface,
    Ann. Global Anal. Geom. 10 (1992), 63-72.
    [16.10.1990]

  53. K.P. Tod,
    More on harmonic morphisms,
    in: Further Advances in Twistor Theory: Vol. II:
    Integrable systems, conformal geometry and gravitation,
    eds. L.J. Mason, L.P. Hughston and P.Z. Kobak,
    Pitman Research Notes in Math. 232, Longman (1995), 47-48.
    (Originally appeared in Twistor Newsletter 30 (1990))

  54. P. Baird, J. C. Wood,
    Monopoles, harmonic morphisms and spinor fields,
    in: Further Advances in Twistor Theory: Vol. II:
    Integrable systems, conformal geometry and gravitation,
    eds. L.J. Mason, L.P. Hughston and P.Z. Kobak,
    Pitman Research Notes in Math. 232, Longman (1995), 49-62.
    (Originally appeared in Twistor Newsletter 31 (1990), 29-37)

  55. J. Heinonen, T. Kilpelaeinen, O. Martio,
    Harmonic morphisms in nonlinear potential theory,
    Nagoya Math. J. 125 (1992), 115-140.
    [07.02.1991]

  56. P. Sattayatham,
    On the functions that preserve harmonicity in the euclidean space,
    SEA Bull. Math. 17 (1993), 45-50.
    [12.02.1991]

  57. S. Gudmundsson,
    Harmonic morphisms between spaces of constant curvature,
    Proc. Edinb. Math. Soc. 36 (1993), 133-143.
    [22.03.1991]

  58. P. Baird, S. Gudmundsson,
    p-harmonic maps and minimal submanifolds,
    Math. Ann. 294 (1992), 611-624.
    [16.05.1991]

  59. P. Baird, J. C. Wood,
    The geometry of a pair of Riemannian foliations by geodesics and associated harmonic morphisms,
    Bull. Soc. Math. Belg., Ser. B 44 (1992), 115-139.
    [09.1991]

  60. J. C. Wood,
    Harmonic morphisms and Hermitian structures on Einstein 4-manifolds,
    Internat. J. Math. 3 (1992), 415-439.
    [16.10.1991]

  61. V. K. Parmar,
    Harmonic Morphisms between Semi-Riemannian Manifolds,
    Doctoral thesis, University of Leeds.
    [xx.12.1991]

  62. P. Baird,
    Riemannian twistors and Hermitian structures on low-dimensional space forms,
    J. Math. Phys. 33 (1992), 3340-3355.
    [05.02.1992]

  63. S. Gudmundsson,
    The Geometry of Harmonic Morphisms,
    Doctoral thesis, University of Leeds.
    [06.04.1992]

  64. S. Gudmundsson, J. C. Wood,
    Multivalued harmonic morphisms,
    Math. Scand. 73 (1993), 127-155.
    [26.07.1992]

  65. J. J. Manfredi, V. Vespri,
    n-Harmonic morphisms in space are Möbius transformations,
    Michigan Math. J. 41 (1994), 135-142.
    [26.08.1992]

  66. H. Takeuchi,
    Some conformal properties of p-harmonic maps and a regularity for sphere-valued p-harmonic maps,
    J. Math. Soc. Japan 46 (1994), 217-234.
    [13.10.1992]

  67. E. Loubeau,
    Seifert Fibre Spaces, Orbifolds and Harmonic Morphisms,
    Master's dissertation, University of Leeds.
    [xx.12.1992]

  68. S. Gudmundsson, R. Sigurdsson,
    A note on the classification of holomorphic harmonic morphisms,
    Potential Analysis 2 (1993), 295-298.
    [20.01.1993]

  69. V. K. Parmar,
    Harmonic morphisms between semi-Riemannian manifolds,
    manuscript based on the author's Doctoral thesis, University of Leeds (1991).

  70. J. Eells, A. Ratto,
    Harmonic maps and minimal immersions with symmetries,
    Annals of Mathematics Studies, 130
    Princeton University Press, 1993.

  71. D. Lambert, A. Ronveaux,
    Hurwitz problem, harmonic morphisms and generalized Hadamard matrices,
    J. Comput. Appl. Math. 54 (1994) 273-283.
    [03.03.1993]

  72. P. Baird,
    Static fields on three-dimensional space forms in terms of contour integrals of twistor functions,
    Physics Letters A 179 (1993), 279-283.
    [08.03.1993]

  73. S. Gudmundsson,
    Harmonic morphisms from complex projective spaces,
    Geom. Dedicata 53 (1994), 155-161.
    [24.05.1993]

  74. S. Gudmundsson,
    Non-holomorphic harmonic morphisms from Kähler manifolds,
    Manuscripta Mathematica 85 (1994), 67-78.
    [03.12.1993]

  75. X. Mo,
    On the geometry of horizontally homothetic maps and harmonic morphisms,
    Adv. Math. Beijing 23 (1994), 282-283.
    [16.12.1993]

  76. J. C. Wood,
    Harmonic morphisms between Riemannian manifolds,
    Report of the first MSJ International Research Institute, July 12-23,
    Tohoku University, Sendai, Japan,
    eds. T. Kotake, S. Nishikawa, R. Shoen,
    Tohoku University, (1993) pp. 413-422.

  77. J.-Y. Chen,
    Stable harmonic maps into $S^2$,
    Report of the first MSJ International Research Institute, July 12-23,
    Tohoku University, Sendai, Japan,
    eds. T. Kotake, S. Nishikawa, R. Shoen,
    Tohoku University, (1993) pp. 431-435.

  78. J. Eells, P. Yiu,
    Polynomial harmonic morphisms between Euclidean spheres,
    Proc. Amer. Math. Soc. 123 (1995), 2921-2925.
    [14.02.1994]

  79. P. B. Gilkey, J. H. Park,
    Riemannian submersions which preserve the eigenfoms of the Laplacian,
    Illinois J. Math. 40 (1996), 194-201.
    [02.05.1994]

  80. X. Mo,
    Horizontally conformal maps and harmonic morphisms (Chinese),
    Chinese Ann. Math. Ser. A 17 (1996), 443-450
    [07.06.1994]

  81. X. Mo,
    Horizontally conformal maps and harmonic morphisms,
    Chinese Journal of Contemporary Mathematics 17 (1996), 245-252.
    [07.06.1994]

  82. J.-Y. Chen,
    Stable harmonic maps into the complex projective spaces,
    J. Diff. Geom. 43 (1996), 42-65.
    [07.07.1994]

  83. S. Gudmundsson,
    Harmonic morphisms from quaternionic projective spaces,
    Geom. Dedicata 56 (1995), 327-332.
    [07.07.1994]

  84. P. Baird, J. C. Wood,
    Hermitian structures and harmonic morphisms in higher dimensional Euclidean spaces,
    Internat. J. Math. 6 (1995), 161-192.
    [14.08.1994]

  85. T. H. Kang, J. S. Pak,
    On the spectral geometry for the Jacobi operators of harmonic maps into a quaternionic projective space,
    Geom. Dedicata 60 (1996), 153-161.
    [20.10.1994]

  86. K. Abe,
    Complex functions of analytic type in the domains of Euclidean $3$-space.,
    in Geometry and topology of submanifolds, VII (Leuven, 1994/Brussels, 1994), 63-66.

  87. A. A. Borisenko,
    Harmonic morphisms associated with minimal strongly parabolic surfaces in Euclidean-space,
    Moscow Univ. Math. Bull. 51 (1) (1996), 3-12.

  88. S. Gudmundsson,
    Minimal submanifolds of hyperbolic spaces via harmonic morphisms,
    Geom. Dedicata 62 (1996), 269-279.
    [23.02.1995]

  89. F. Duheille,
    Sur l'image des morphismes harmoniques à valuers dans R^2 ou R^3,
    C. R. Acad. Sci. Paris 320 (1995), 1495-1500.
    [17.03.1995]

  90. B. Djehiche, T. Kolsrud,
    Canonical transformations for diffusions,
    C. R. Acad. Sci. Paris Ser. 1 Math. 321 (1995), 339-344.
    [04.05.1995]

  91. B. Fuglede,
    Harmonic morphism between semi-riemannian manifolds,
    Ann. Acad. Sci. Fennicae 21 (1996), 31-50.
    [07.06 1995]

  92. S. Gudmundsson, J. C. Wood,
    Harmonic morphisms between almost Hermitian manifolds,
    Boll. Un. Mat. Ital. (7) 11-B (1997), Supplement to fasc. 2, pp. 185-197.
    [03.07.1995]

  93. Y.-L. Ou,
    Complete lifts of maps and harmonic morphisms between Euclidean spaces,
    Beitr. Algebra Geom. 37 (1996), 31-40.
    [03.10.1995]

  94. Y.-L. Ou, J. C. Wood,
    On the classification of quadratic harmonic morphisms between Euclidean spaces,
    Algebras, Groups and Geometries 13 (1996) 41-53.
    [28.10.1995]

  95. Y.-X. Dong,
    A Bernstein theorem for harmonic morphisms (Chinese),
    Chinese Science Bulletin (Chinese) 41 (1996), 1735-1737.
    [31.10.1995]

  96. P. Baird, J. C. Wood,
    Weierstrass representations for harmonic morphisms on Euclidean spaces and spheres
    Math. Scand. 81 (1997), 283-300.
    [17.11.1995]

  97. M. T. Mustafa,
    Integral Formulae for Harmonic Morphisms,
    Doctoral thesis, University of Leeds.
    [xx.12.1995]

  98. S. Montaldo,
    p-Harmonic maps and Stability of Riemannian submersions,
    Boll. Un. Mat. Ital. (7) 10-A (1996), 537-550.

  99. P. Baird,
    Conformal foliations by circles and complex isoparametric functions on Euclidean 3-space,
    Math. Proc. Cambridge Philos. Soc. 123 (1997), 273-300.
    [02.02.1996]

  100. E. Loubeau,
    Morphisms of Differental Operators on Manifolds,
    Doctoral thesis, University of Leeds.
    [xx.03.1996]

  101. Q. Cheng, Y.-X. Dong,
    Some notes on harmonic morphisms (Chinese),
    Kexue Tongbao. Chinese Science Bulletin (Chinese) 41 (1996), 1825--1828.
    [19.04.1996]

  102. M. T. Mustafa,
    A Bochner technique for harmonic morphisms,
    J. London Math. Soc. 57 (1998), 746-756.
    [23.04.1996]

  103. Y.-X. Dong,
    A Bernstein theorem for harmonic morphisms from a N+1-sphere to a N-manifold,
    Chinese Sci. Bull. 42 (1997), 11-14.
    An English translation of the author's paper from [31.10.1995]
    [10.05.1996]

  104. P. B. Gilkey, J. V. Leahy, J. H. Park,
    Eigenvalues of the form valued Laplacian for Riemannian submersions,
    Proc. Amer. Math. Soc. 126 (1998), 1845-1850.
    [20.05.1996]

  105. S. Gudmundsson,
    On the existence of harmonic morphisms from symmetric spaces of rank one,
    Manuscripta Math. 93 (1997) 421-433.
    [04.06.1996]

  106. P. Baird, Y.-L. Ou,
    Harmonic maps and morphisms, from multilinear orm-preserving mappings,
    Internat. J. Math. 8 (1997), 187-211.
    [07.06.1996]

  107. Y.-L. Ou,
    On constructions of harmonic morphisms into Euclidean Space (Chinese),
    J. Guangxi Univ. Nat. 2 (1996), 1-6.
    [18.06.1996]

  108. F. Duheille,
    Une preuve probabiliste élémentaire d'un résultat de P. Baird et J.C. Wood,
    Annales de l'Institut Henri Poincaré,
    Probabilités et Statistiques, Vol 33, 2, 1997, p. 283-291.
    [24.06.1996]

  109. J. C. Wood,
    Harmonic maps and morphisms in 4 dimensions,
    in: Geometry, Topology and Physics Proceedings of the First Brazil-USA Workshop,
    Campinas, Brazil, June 30 - July 7, 1996,
    B.N. Apanasov, S.B. Bradlow, W.A. Rodrigues, K.K. Uhlenbeck (Editors),
    Walter de Gruyter & Co, Berlin, New York (1997), 317-333.
    [01.09.1996]

  110. Y.-L. Ou,
    Quadratic harmonic morphisms and O-systems,
    Ann. Inst. Fourier (Greboble) 47 (1997), 687-713.
    [13.09.1996]

  111. X.-L. Chao,
    The spectral geometry of harmonic maps into HP^n(c),
    Kodai Math. J. 20 (1997), 33-40.
    [19.09.1996]

  112. S. Montaldo,
    Stability of harmonic maps and morphisms,
    Doctoral thesis, University of Leeds.
    [xx.11.1996]

  113. V. Apostolov, P. Gauduchon,
    The Riemannian Goldberg-Sachs theorem,
    Internat. J. Math. 8 (1997), 421-439
    [04.11.1996]

  114. E. Loubeau,
    Pluriharmonic morphisms,
    Math. Scand. 84 1999, 165-178.
    [15.11.1996]

  115. J.-Y. Chen
    Structures of certain harmonic maps into Kähler manifolds,
    Internat. J. Math. 8 (1997), 573-581.
    [27.11.1996]

  116. J. C. Wood,
    Harmonic maps and harmonic morphisms,
    Zap. Nauchn. Semin. POMI 234, 190-200 (1996), see also
    J. Math. Sci., New York 94, 1263-1269 (1999).

  117. P. B. Gilkey, J. V. Leahy, J. H. Park,
    The spectral geometry of Riemannian submersions,
    11th Yugoslav Geometrical Seminar (Div\v cibare, 1996).
    Zb. Rad. Mat. Inst. Beograd. (N.S.) 6(14) (1997), 36-54.

  118. R. Pantilie,
    Some remarks on harmonic Riemannian submersions,
    Bull. Math. Soc. Sc. Math. Roumanie (N.S.) 40 (88) (1997), 21-26.
    [15.01.1997]

  119. S. Gudmundsson,
    Harmonic morphisms as sphere bundles over compact Riemann surfaces,
    Internat. J. Math. 8 (1997), 935-942.
    [01.02.1997]

  120. F. Duheille,
    On the range of R^2 or R^3-valued harmonic morphisms,
    Ann. Probab. 26 (1998), 308-315.
    [??.04.1997]

  121. P. Baird, J. C. Wood,
    Harmonic morphisms, conformal foliations and shear-free ray congruences,
    Bull. Belg. Math. Soc. 5 (1998), 549-564.
    [??.05.1997]

  122. M. T. Mustafa,
    Totally geodesic horizontally conformal maps,
    Rend. Istit. Mat. Univ. Trieste 30 (1998), 45-55.
    [06.06.1997]

  123. S. Montaldo,
    Stability of harmonic morphisms to a surface,
    Internat. J. of Math. 9 (1998), 865-875.
    [25.06.1997]

  124. Y.-L. Ou,
    O-systems, orthogonal multiplications and isoparametric functions (Chinese),
    J. Guangxi Univ. Nat. 3 (1997), 121-128.
    [14.07.1997]

  125. R. L. Bryant,
    Harmonic morphisms with fibers of dimension one,
    Communications in Analysis and Geometry 8 (2000), 219-265.
    [16.07.1997].

  126. E. Loubeau,
    Morphisms of the heat equation,
    Annals of Global Analysis and Geometry 15 (1997), 487-496.
    [12.08.1997]

  127. E. Loubeau,
    Harmonic morphisms as a variational problem,
    Proc. Royal Soc. Edinburgh 129(A) (1999), 385-393.
    [17.09.1997]

  128. M. T. Mustafa, J. C. Wood,
    Harmonic morphisms from three-dimensional Euclidean and spherical space forms,
    Algebras Groups Geom. 15 (1998), 155-172.
    [14.10.1997]

  129. P. B. Gilkey, J. V. Leahy, J. H. Park,
    The eigenforms of the complex Laplacian for a Hermitian submersion,
    Nagoya Math. J. 156 (1999), 135-157.
    [04.11.1997]

  130. E. Loubeau,
    Pseudo harmonic morphisms,
    Internat. J. Math. 8 (1997), 943-951.
    [19.11.1997]

  131. J. C. Larsen
    Metric singularities and converging geodesics,
    preprint, Royal Veterinary and Agricultural University, Denmark (1997).

  132. J. Eells, A. Verjovsky,
    Harmonic and Riemannian foliations,
    Bol. Soc. Mexicana 4 (1998), 1-12.
    [??.??.199?]

  133. E. Loubeau,
    Hermitian Harmonic Maps,
    Beitr. Algebra Geom. 40 (1999), 1-14.
    [02.02.1998]

  134. E. Loubeau, S. Montaldo,
    A note on exponentially harmonic morphisms,
    Glasgow Math. J. 42 (2000), 25-29.
    [24.03.1998]

  135. S. Montaldo,
    A minimising property of the radial projection,
    Sem. Mat. Univ. Pol. Torino 56 (1998), 55-58.
    [25.03.1998]

  136. C. L. Bejan, M. Benyounes and E. Loubeau
    Quasi-harmonicity for semi-Riemannian manifolds
    Bul. Inst. Polit. Iasi 44 (1998), 1-9.
    [06.04.1998]

  137. R. Ababou, P. Baird & J. Brossard,
    Polynômes semi-conformes et morphismes harmoniques,
    Math. Z. 231 (1999), 589-604.
    [17.05.1998]

  138. R. Pantilie,
    Harmonic morphisms with one-dimensional fibres,
    Internat. J. Math. 10 (1999), 457-501.
    [01.07.1998]

  139. Z. Tang,
    Harmonic polynomial morphisms between Euclidean spaces,
    Sci. China Ser. A 42 (1999), no. 6, 570-576.
    [18.08.1998]

  140. M. A. Aprodu, M. Aprodu,
    Implicitly defined harmonic PHH submersions,
    Manuscripta Math. 100 (1999), 103-121.
    [03.09.1998].

  141. J. X. Fu,
    Classification of harmonic morphisms to Euclidean spaces (Chinese. Chinese summary)
    Chinese Ann. Math. Ser. A 20 (1999), 361-364.
    [07.09.1998].

  142. J. X. Fu,
    The Classification of harmonic morphisms to Euclidean spaces
    preprint, Fudan University (2001).

  143. M. Svensson,
    Polynomial Harmonic Morphisms,
    Master's dissertation, Lund University (1998).

  144. P. Baird,
    Knot singularities of harmonic morphisms,
    Proceedings of the Edinburgh Mathematical Society 44 (2001), 71-85.
    [08.12.1998]

  145. J. C. Larsen,
    Singular and Multilinear Geometry,
    submitted research monograph.

  146. B. Fuglede,
    The beginnings of harmonic morphisms,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 3-12
    CRC Press (2000).

  147. X. Mo,
    Harmonic morphisms via deformation of metrics for horizontally conformal maps,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 13-22
    CRC Press (2000).

  148. R. Pantilie,
    On submersive harmonic morphisms,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 23-30
    CRC Press (2000).

  149. S. Montaldo,
    On the stability of harmonic morphisms,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 31-38
    CRC Press (2000).

  150. M. T. Mustafa,
    Applications of the Bochner technique to harmonic morphisms between simply-connected space forms,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 39-46
    CRC Press (2000).

  151. J. C. Wood,
    On the construction of harmonic morphisms from Euclidean spaces,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 47-60
    CRC Press (2000).

  152. P. Baird, Y.-L. Ou,
    Harmonic polynomial morphisms and Milnor fibrations,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 61-66
    CRC Press (2000).

  153. S. Ianus, A. M. Pastore,
    Harmonic maps and morphisms on metric f-manifolds with parallelizable kernel,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 67-74
    CRC Press (2000).

  154. P. Baird, C.-L. Bejan,
    Quasi-harmonic maps between almost symplectic manifolds,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 75-96
    CRC Press (2000).

  155. H. Urakawa,
    A discrete analogue of the harmonic morphism,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 97-108
    CRC Press (2000).

  156. C. K. Anand,
    Harmonic morphisms of metric graphs,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 109-112
    CRC Press (2000).

  157. A. Brandao, T. Kolsrud,
    Time-dependent conservation laws and symmetries for classical mechanics and heat equations,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 113-128
    CRC Press (2000).

  158. Y. X. Dong,
    Harmonic maps and morphisms from spheres and deformed spheres.,
    in: Harmonic Morphisms, Harmonic Maps and Related Topics
    Proceedings of a conference held in Brest, France 7th-11th of July 1997, 129-139
    CRC Press (2000).

  159. S. Gudmundsson, X. Mo,
    Harmonic morphisms as unit normal bundles of minimal surfaces,
    Manuscripta Math. 100 (1999) 3, 323-333.
    [06.02.1999]

  160. S. Montaldo,
    Stability of harmonic morphisms,
    Algebras, Groups and Geometry 16 (1999), 277-286.
    [04.03.1999]

  161. E. Loubeau,
    On p-harmonic morphisms,
    Differential Geometry and its Applications 12 (2000), 219-229.
    [12.04.1999]

  162. O. Wittich,
    A transformation of a Feynman-Kac formula for holomorphic families of type B,
    J. Math. Phys. 41 (2000), 244-259.
    [14.04.1999]

  163. H. Urakawa,
    A discrete analogue of the harmonic morphism and Green kernel comparison theorems,
    Glasg. Math. J. 42 (2000), 319-334.
    [26.05.1999]

  164. M. T. Mustafa,
    Restrictions on harmonic morphisms,
    Conformal Geometry and Dynamics 3 (1999), 102-115.
    [08.06.1999]

  165. C.-L. Bejan, T. Q. Binh,
    Harmonic maps and morphisms from the tangent bundle,
    Acta Sci. Math. (Szeged) 6 2000, 385-401.
    [17.06.1999]

  166. G. Choi, G. Yun,
    A theorem of Liouville type for harmonic morphisms
    Geom. Dedicata 84 (2001), 179-182.
    [02.08.1999]

  167. C. Gherghe,
    Harmonic morphisms on some almost contact metric manifolds,
    Tensor NS 61 (1999), 276-281.
    [18.08.1999]

  168. M. T. Mustafa,
    Applications of harmonic morphisms to gravity,
    J. Math. Phy. 41 (10) 2000, 6918-6929.
    [20.08.1999]

  169. P. B. Gilkey, J. V. Leahy, J. Park
    Spectral Geometry, Riemannian submersions and the Gromov-Lawson conjecture
    Chapman & Hall (1999)

  170. R. Pantilie,
    Conformal actions and harmonic morphisms,
    Math. Proc. Cambridge Philos. Soc. 129 2000, 527-547.
    [22.09.1999]

  171. T. Tsuruta,
    Harmonic morphisms on weighted graphs,
    J. Math. Sci. Univ. Tokyo 7 (2000), 297-310.
    [15.10.1999]

  172. I. A. Calinov,
    Pluriharmonic morphisms,
    Demonstratio Matematica 33 (2000), 889-899.
    [23.11.1999]
    (possibly not completely free of errors)

  173. Y.-L. Ou,
    Biharmonic morphisms between Riemannian manifolds,
    in Geometry and topology of submanifolds, X (Beijing/Berlin, 1999), 231-239,
    World Sci. Publishing, River Edge, NJ, (2000).
    [17.12.1999]

  174. J.C. Wood,
    The geometry of harmonic maps and morphisms,
    in:Proceedings of the Fourth International Workshop on Differential Geometry and its Applications,
    Brasov, Romania, September 16-22, 1999, ed. G. Pitts and G. Munteanu,
    Transilvania University Press (1999) pp. 306-313.

  175. H. Takeuchi,
    On the p-harmonic Morphisms for Graphs,
    Bull. Shikoku Univ. (B) 13 (2000), 1-6.
    [??.??.????]

  176. G. Wang,
    S^1-invariant harmonic maps from S^3 to S^2
    Bull. London Math. Soc. 32 (2000), 729-735.
    [06.01.2000]

  177. M. A. Aprodu, M. Aprodu, V. Brinzanescu,
    A class of harmonic submersions and minimal submanifolds,
    Internat. J. Math. 11 (2000), 1177-1191
    [13.02.2000]

  178. M. Mocanu,
    Harmonic morphisms with integrable dilatation,
    Travaux de la Conférence Internationale d'Analyse Complexe et du 8e Séminaire Roumano-Finlandais (Iassy, 1999).
    Math. Rep. (Bucur.) 2(52) (2000), 533-545.
    [20.02.2000]

  179. R. Pantilie,
    Harmonic morphisms with 1-dimensional fibres on 4-dimensional Einstein manifolds,
    Comm. Anal. Geom. 10 (2002), 779-814.
    [29.03.2000]

  180. R. Pantilie and J.C. Wood,
    New results on harmonic morphisms with one-dimensional fibres,
    Bull. Math. Soc. Sci. Math. Roumanie 43, 355-365 (2000)
    [20.07.2000]

  181. R. Pantilie,
    Isometric actions and harmonic morphisms,
    Michigan Math. J. 47 (2000), 453-467
    [28.07.2000]

  182. C. Gherghe, S. Ianus, A. M. Pastore,
    Harmonic maps, harmonic morphisms and stability
    Bull. Math. Soc. Sc. Math. Roumanie 43(91) (2000), 247-254.
    [30.07.2000]

  183. J.-M. Burel,
    Structures géométriques sur les variétés et applications harmoniques
    Doctoral thesis, University of Brest.
    [xx.09.2000]

  184. R. Pantilie,
    Submersive Harmonic Maps and Morphisms,
    Doctoral thesis, University of Leeds.
    [xx.09.2000]

  185. E. Barletta, S. Dragomir, H. Urakawa,
    Pseudoharmonic maps from non-degenerate CR manifolds to Riemannian manifolds,
    Indiana Univ. Math. J. 50 (2001), 719-746.
    [18.09.2000]

  186. S. Montaldo and J.C. Wood,
    Harmonic morphisms and the Jacobi operator,
    Rend. Sem. Fac. Sci. Univ. Cagliari 70 (2000), 21-28.
    [24.10.2000]

  187. T. Kolsrud, E. Loubeau,
    Foliated manifolds and conformal heat morphisms,
    Annals of Global Analysis and Geometry 21 (2002), 241-267
    [23.11.2000]

  188. E. Loubeau,
    The Fuglede-Ishihara and Baird-Eells theorems for $p>1$,
    Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000),
    Contemp. Math. 288, 376-380.
    [??.??.????]

  189. J.-M. Burel
    Applications et morphismes harmoniques a valeurs dans une surface
    Comptes Rendus de l'Académie des Sciences Paris 332 (2001), 441-446.
    [10.01.2001]

  190. P. Baird, L. Gallardo,
    A class of discriminant varieties in the conformal 3-sphere,
    Beitr. Algebra Geom. 43 (2002), 195-208.
    [12.02.2001]

  191. X. Mo, Y. Shi
    A non-existence theorem of proper harmonic morphisms between hyperbolic spaces,
    Geom. Dedicata 93 (2002), 89-94.
    [11.05.2001]

  192. M. Svensson,
    On holomorphic harmonic morphisms,
    Manuscripta Math. 107 (2002), 1-13.
    [28.05.2001]

  193. S. Gudmundsson, E. Kappos
    On the geometry of the tangent bundle with the Cheeger-Gromoll metric,
    Tokyo J. Math. 25 (2002), 75-83.
    [05.06.2001]

  194. C.L. Bejan, M. Benyounes, T. Q. Binh
    Harmonicity, minimality, conformality in terms of horizontal and vertical Lee forms,
    Publ. Math. Debrecen 59/3-4, (2001), 389-406.
    [22.06.2001]

  195. W.-J. Lu,
    On some results of harmonic morphisms between semi-Euclidean spaces,
    Guangxi Sciences 8 (2001), 266-270.
    [31.07.2001]

  196. C.L. Bejan, M. Benyounes,
    Harmonic $\phi$-morphisms,
    Beitr. Algebra Geom. 44 (2003), 309-321.
    [01.10.2001]

  197. D. Kamissoko,
    Applications semi-conformes, l'optique géométrique et les applications harmoniques
    Doctoral thesis, University of Brest.
    [09.10.2001]

  198. M. Svensson,
    Harmonic morphisms from even-dimensional hyperbolic spaces,
    Math. Scand. 92 (2003), 246-260.
    [01.11.2001]

  199. S. Gudmundsson, E. Kappos
    On the geometry of tangent bundles,
    Expo. Math. 20 (2002), 1-41.
    [08.11.2001]

  200. X. Mo
    Harmonic morphisms and submanifolds with conformal second fundamental forms,
    Glasgow Math. J. 45 (2003), 143-151.
    [19.11.2001]

  201. P. Baird, D. Kamissoko
    On constructing biharmonic maps and metrics,
    Ann. Global Anal. Geom. 23 (2003), 65-75.
    [11.12.2001]

  202. R. Pantilie, J. C. Wood,
    Harmonic morphisms with one-dimensional fibres on Einstein manifolds,
    Trans. Amer. Math. Soc. 354 (2002), 4229-4243.
    [17.12.2001]

  203. J.-M. Burel
    Almost contact structures and harmonic maps with minimal fibres,
    Houston J. Math. 30 (2004), 393-411.
    [20.12.2001]

  204. J. Eells, B. Fuglede,
    Harmonic Maps between Riemannian Polyhedra,
    Cambridge University Press (2001)

  205. E. Loubeau, Y.-L. Ou,
    The characterization of biharmonic morphisms ,
    Differential geometry and its applications, (Opava 2001),
    Math. Publ. 3, Silesian Univ. Opava, Opava 2001.

  206. V. Brinzanescu
    Pseudo-harmonic morphisms; applications and examples,
    An. Univ. Timisoara Ser. Mat.-Inform. 39 (2001),
    Special Issue: Mathematics, 111-121.
    [??.??.????]

  207. E. Loubeau, X. Mo,
    The geometry of pseudo harmonic morphisms,
    Beitr. Algebra Geom. 45 (2004), 87-102.
    [20.02.2002]

  208. J.-M. Burel, E. Loubeau,
    $p$-harmonic morphisms: the $1 < p < 2$ case and some non-trivial examples,
    Contemp. Math. 308 (2002), 21-37
    [??.??.????]

  209. H. Jin, X. Mo,
    On submersive p-harmonic morphisms and their stability,
    Contemp. Math. 308 (2002), 205-209
    [??.??.????]

  210. R. Pantilie, J. C. Wood,
    A new construction of Einstein self-dual metrics,
    Asian J. Math. 6 (2002), 337-348.
    [05.03.2002]

  211. X. Mo
    The geometry of conformal foliations and p-harmonic morphisms,
    Math. Proc. Cambridge Philos. Soc. 135 (2003), 321-334.
    [20.03.2002]

  212. P. Baird, J.-M. Burel,
    Conformal subfoliations of prescribed geodesic curvature,
    Math. Scand. 93 (2003), 221-239.
    [04.04.2002]

  213. J.-M. Burel, S. Gudmundsson
    On the geometry of the Gauss map of conformal foliations by lines,
    Math. Proc. Cambridge Philos. Soc. 136 (2004), 247-255.
    [08.05.2002]

  214. R. Pantilie and J.C. Wood,
    Topological restrictions for circle actions and harmonic morphisms,
    Manuscripta Math. 110 (2003), 351-364
    [16.05.2002]

  215. M. Ville,
    Harmonic morphisms from Einstein 4-manifolds to Riemann surfaces,
    Internat. J. Math. 14 (2003) 327-337.
    [26.08.2002]

  216. G. Yun
    Horizontally conformal maps and eigenfunctions of the Laplacians,
    Intern. Math. Journal 2 (2002), 445-451.
    [02.09.2002]

  217. A. Pambira,
    Harmonic maps and morphisms in semi-Riemannian and complex-Riemannian geometry,
    Doctoral thesis, University of Leeds.
    [xx.11.2002]

  218. S. Erdem,
    Harmonicity of maps between (indefinite) metric-f-manifolds and $\phi$-pseudo harmonic morphisms,
    Publicationes Mathematicae, Debrecen 63 (2003), 317-341.
    [22.11.2002]

  219. J.-M. Burel,
    Almost symplectic structures and harmonic morphisms,
    Bolletino della Unione Matematica Italiana (8) 7-B (2004), 493-507.
    [27.11.2002]

  220. J. J. Konderak, R. A. Wolak,
    Transversally Harmonic Maps Between Manifolds with Riemannian Foliations,
    Quart. J. Math. 54 (2003), 335-354.
    [16.12.2002]

  221. M. T. Mustafa,
    A remark on harmonic maps to a surface,
    Int. J. Math. Game Theory Algebra 13 (2003), 209-226.
    [??.??.????]

  222. M. Svensson,
    Holomorphic foliations, harmonic morphisms and the Walczak formula,
    J. London Math. Soc. 68 (2003) 781-794.
    [13.01.2003].

  223. P. Baird, J. C. Wood,
    Harmonic morphisms between Riemannian manifolds,
    London Math. Soc. Monogr. (N.S.) 29,
    Oxford Univ. Press (2003).

  224. S. Gudmundsson, M. Svensson,
    P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds,
    Bull. London Math. Soc. 38 (2006) 869-872.

  225. H. Takeuchi,
    The spectrum of the p-Laplacian and p-harmonic morphisms on graphs,
    Illinois J. Math. 47 (2003), 939-955.
    [07.03.2003]

  226. S. Erdem,
    $\phi$-pseudo harmonic morphisms some subclasses and their liftings to tangent bundles,
    Houston J. of Math. 30 (2004), 1009-1037.
    [26.03.2003]

  227. E. Barletta,
    Hörmander Systems and Harmonic Morphisms,
    Ann. Scoula Norm. Sup. Pisa Cl. Sci (5) Vol. II (2003), 379-394.
    [27.03.2003]

  228. K. L. Duggal,
    Harmonic maps, morphisms and globally null manifolds,
    International Journal of Pure and Applied Mathematics, 6 (2003), 421-438
    [08.04.2003]

  229. P.-A. Nagy, C. Vernicos,
    The length of harmonic forms on a compact Riemannian manifold,
    Trans. Amer. Math. Soc. 356 (2004), 2501 -2513.
    [30.04.2003]

  230. T. H. Kang,
    A Liouville type theorems for p-harmonic morphisms,
    Intern. Math. Journal 3 (2003), 1049-1052.
    [12.05.2003]

  231. C.-L. Bejan,
    Quasi-harmonic morphisms,
    Ital. J. Pure Appl. Math. 18 (2000), 51-68.
    [06.06.2003]

  232. S. Erdem,
    Constancy of some maps into metric f-manifolds,
    Bull. Belg. Math. Soc. Simon Stevin 13 (2006) 31-38.
    [??.10.2003]

  233. K, Ueno,
    Nonexistence theorems for proper harmonic maps and harmonic morphisms between space forms of negative curvature,
    Japan. J. Math. 30 (2004), 423-432.
    [12.12.2003]

  234. A. Kock,
    A geometric theory of harmonic and semi-conformal maps,
    Cent. Eur. J. Math. 2 (2004), 708-724 (electronic).
    [15.12.2003]

  235. M. Svensson,
    Harmonic morphisms, Hemitian structures and symmetric spaces,
    Doctoral thesis, Lund University.
    [06.02.2004]

  236. A. Pambira,
    Harmonic morphisms between degenerate semi-Riemannian manifolds,
    Beitr. Algebra Geom. 46 (2005), 261-281
    [27.02.2004]

  237. Y.-L. Ou, W. Wei
    A classification and some constructions of p-harmonic morphisms,
    Beitr. Algebra Geom.45 (2004), 637-647.
    [04.03.2004]

  238. Y.-L.-Ou,
    On p-harmonic morphisms minimal foliations and rigidity of metrics,
    J. Geom. and Phys. 52 (2004), 365-381.
    [17.03.2004]

  239. D. Fetcu,
    \phi-Pseudo harmonic morphisms,
    An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.)
    50 (2004), 327-346.
    [15.04.2004]

  240. M. T. Mustafa,
    The structure of harmonic morphisms with totally geodesic fibres,
    Commun. Contemp. Math. 6 (2004), 419-430.
    [16.04.2004]

  241. Y.-L.-Ou,
    On p-harmonic morphisms and conformally flat spaces,
    Math Proc. Cambridge Philos. Soc. 139 (2005), 317-332.
    [18.05.2004]

  242. M. Svensson,
    Harmonic morphisms in Hermitian geometry,
    J. Reine Angew. Math. 575 (2004), 45-68.
    [30.06.2004]

  243. A. Balmus,
    Biharmonic properties and conformal changes,
    An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.)
    50 (2004), 361-372.
    [23.07.2004]

  244. L. Danielo,
    Construction de métriques d'Einstein à partir de transformations biconformes,
    Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 553-588.
    [30.08.2004]

  245. R. Slobodeanu,
    Biconformal changes of metric and pseudo-harmonic morphisms,
    Rev. Roumaine Math. Pures Appl. 50 (2005), 315-319
    [04.10.2004]

  246. X. Mo, L. Huang, Y. Zhang,
    On the construction of p-harmonic morphisms and conformal actions,
    Acta Mathematica Sinica, English Series 23 (2007), 1475-1484.
    [24.10.2004]

  247. G. Choi, G. Yun,
    Harmonic morphisms and subharmonic functions,
    Int. J. Math. Math. Sci. 2005 (2005) 383-391.
    [22.11.2004]

  248. R. Pantilie and J.C. Wood,
    Twistorial harmonic morphisms with one-dimensional fibres on self-dual four-manifolds,
    Quart. J. Math. 57 (2006), 105-132.
    [22.01.2005]

  249. Y.-L. Ou,
    p-Harmonic morphisms, biharmonic morphisms and nonharmonic biharmonic maps,
    J. Geom. Physics 56 (2006), 358-374.
    [06.02.2005]

  250. S. Gudmundsson, M. Svensson,
    Harmonic morphisms from the Grassmannians and their non-compact duals,
    Ann. Global Anal. Geom. 30 (2006), 313-333
    [10.02.2005]

  251. S. Gudmundsson, M. Svensson,
    Harmonic morphisms from the compact semisimple Lie groups and their non-compact duals,
    Differential Geom. Appl. 24 (2006), 351-366.
    [08.03.2005]

  252. R. Slobodeanu,
    Pseudo-harmonic morphisms with low dimensional fibres,
    Rend. Circ. Mat. Palermo (2) 55 (2006), 5-20.
    [25.03.2005]

  253. X. Mo, Y. Shi
    A non-existence theorem of proper harmonic morphisms from weakly asymptotically hyperbolic manifolds,
    Tohoku Math. J. 58 (2006), 359-368.
    [06.05.2005]

  254. E. Loubeau, R. Pantilie,
    Harmonic morphisms between Weyl spaces and twistorial maps,
    Comm. Anal. Geom. 14 (2006), 847-881.
    [16.05.2005]

  255. Y.-L. Ou, G. Walschap
    A classification of horizontally homothetic submersions from spaces of non-negative curvature,
    Bull. London Math. Soc. 38 (2006), 485-493.
    [20.04.2005]

  256. Y.-L.-Ou,
    p-Harmonic functions and the minimal surface equation in a Riemannian manifold,
    Illinois J. Math. 49 (2005), 911-927.
    [10.06.2005]

  257. S. Ianus, A. M. Pastore,
    Some foliations and harmonic morphisms,
    Rev. Roumaine Math. Pures Appl. 50 (2005), 671-676.
    [05.07.2005]

  258. W.-J. Lu, L.-J. Fang,
    A classification of quadric harmonic morphisms between semi-Euclidean spaces R^3_r \to R^2_s,
    Guangxi Sciences 12 (2005), 268-272.
    [10.08.2005]

  259. M. A. Aprodu, T. Bouziane,
    Pseudo harmonic morphisms on Riemannian Polyhedra,
    Internat. J. Math. 17 (2006), 351-374.
    [26.08.2005]

  260. P. Baird, L. Danielo,
    Three-dimensional Ricci solitons which project to surfaces,
    J. Reinen und Angew. Math. 608 (2007), 65-91.
    [25.10.2005]

  261. G. Choi, G. Yun,
    Harmonic morphisms and stable minimal submanifolds,
    Kangweon-Kyungki Math. Jour. 14, 2006, 13-33.
    [28.11.2005]

  262. L. S. Das, R. Nivas,
    Harmonic morphism on almost r-contact metric manifolds,
    Algebras Groups and Geometries 22 (2005), 61-68.
    [14.12.2005]

  263. J. C. Wood,
    Infinitesimal Deformations of Harmonic Maps and Morphisms,,
    Expository article for the conference `Symmetry in geometry and physics.
    In honour of Dmitri Alekseevsky', University of Rome 1, 14-17 September 2005.

  264. S. Gudmundsson, M. Svensson,
    On the existence of harmonic morphisms from certain symmetric spaces,
    J. Geom. Phys. 57 (2007), 353-366.
    [06.01.2006]

  265. V. Brinzanescu, R. Slobodeanu,
    Holomorphicity and Walczak formula on Sasakian manifolds,
    J. Geom. Phys. 57 (2006), 193-207.
    [20.02.2006]

  266. S. D. Jung, H. Liu, D. J. Moon,
    A Liouville type theorem for harmonic morphisms,
    J. Korean Math. Soc. 44 (2007), 941-947.
    [03.03.2006]

  267. H. Azad, M.T. Mustafa,
    Harmonic morphisms of warped product type from Einstein manifolds,
    Arch. Math. 88 (2007), 368-377.
    [14.03.2006]

  268. Y.-L. Ou, F. Wilhelm,
    Horizontally homothetic submersions and nonnegative curvature,
    Indiana University Math Journal 56 (2007), 243-261.
    [03.04.2006]

  269. P. Ye, X. Mo,
    Harmonic morphisms from conformally flat spaces,
    Appl. Math. Sci. 1 (2007), 25-30.
    [14.06.2006]

  270. J.-C. Liu,
    Classification and Liouville type theorems for $p$-harmonic morphisms,
    Geom. Dedicata 129 (2007), 35-45.
    [28.07.2006]

  271. D. Chinea,
    Harmonicity of holomorphic maps between almost Hermitian manifolds,
    Canad. Math. Bull. (52) (2009), 18-27.
    [08.08.2006]

  272. G. Yun, A. Gundon Choi
    Horizontally homothetic harmonic morphisms and stability of totally geodesic submanifolds,
    J. Korean Math. Soc. 45 (2008), 493-511.
    [04.09.2006]

  273. N. Dinuctua,
    Quadratic pseudo-harmonic morphisms,
    Rev. Roumaine Math. Pures Appl. 52 (2007), 329-339.
    [28.09.2006]

  274. S. Barré, A. Zeghib,
    Real and discrete holomorphy: introduction to an algebraic approach,
    J. Math. Pures Appl. (9) 87 (2007), 495-513.
    [03.10.2006]

  275. D. Chinea,
    On horizontally conformal $(\phi,\phi')$-holomorphic submersions,
    Houston J. Math. 34 (2008), 721-737.
    [30.10.2006]

  276. G. Hansen, A. Zardecki
    Unstructured surface mesh adaptation using the Laplace-Beltrami target metric approach.,
    J. Comput. Phys. 225 (2007), 165-182.
    [15.11.2006]

  277. P. Ye, X. Mo, F. Sun,
    Harmonic morphisms into almost Hermitian manifolds,
    Beijing Daxue Xuebao Ziran Kexue Ban 42 (2006), 35-40.
    [??.??.????]

  278. M. A. Aprodu, T. Bouziane
    A survey on harmonic morphisms on Riemannian polyhedra,
    Modern trends in geometry and topology, 47-54,
    Cluj Univ. Press, Cluj-Napoca, 2006

  279. R. Pantilie,
    Harmonic morphisms between Weyl spaces,
    Modern trends in geometry and topology, 321-332,
    Cluj Univ. Press, Cluj-Napoca, 2006

  280. J. C. Wood,
    Harmonic morphisms between Riemannian manifolds,
    Modern trends in geometry and topology, 397-414,
    Cluj Univ. Press, Cluj-Napoca, 2006

  281. M. A. Aprodu,
    On a construction of harmonic Riemannian submersions,
    Math. Rep. (Bucur.) 9 (59) (2007), 243-247.
    [08.01.2007]

  282. R. Pantilie,
    On a class of twistorial maps,
    Differential Geom. Appl. 26 (2008), 366-376.
    [14.02.2007]

  283. S. Gudmundsson, A. Sakovich,
    Harmonic morphisms from the classical compact semisimple Lie groups,
    Ann. Global Anal. Geom. 33 (2008), 343-356.
    [08.03.2007]

  284. A. Fawaz,
    Harmonic conformal flows on manifolds of constant curvature,
    Cent. Eur. J. Math. 5 (2007), 493-504.
    [24.05.2007]

  285. R. Pantilie,
    Harmonic morphisms with one-dimensional fibres on conformally flat Riemannian manifolds,
    Math. Proc. Cambridge Philos. Soc. 145 (2008), 141-151.
    [02.06.2007]

  286. B. Sahin,
    Horizontally conformal submersions of CR-manifolds,
    Kodai Math. J. 31 (2008), 46-53.
    [19.06.2007]

  287. S. Gudmundsson, A. Sakovich,
    Harmonic morphisms from the classical non-compact semisimple Lie groups,
    Differential Geom. Appl. 27 (2009), 47-63.
    [06.09.2007]

  288. B. A. Simoes,
    Twistor constructions of harmonic morphisms and Jacobi fields,
    Doctoral thesis, University of Leeds.
    [??.09.2007]

  289. M. A. Aprodu,
    PHH harmonic morphisms are stable,
    Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2007), 1081-1088
    [11.10.2007]

  290. N. Dinuta,
    Pseudo-horizontally homothetic maps on semi-Riemannian manifolds,
    Math. Rep. (Bucur.) 10 (60) (2008), 37-42.
    [23.10.2007]

  291. M. Mishra,
    Harmonic morphisms on almost $GF-r$ contact metric structure manifolds,
    South East Asian J. Math. Math. Sci 6 (2007), 79-84.
    [??.??.????]

  292. T. Kolsrud
    Quantum and classical conserved quantities: martingales, conservation laws and constants of motion.,
    Stochastic analysis and applications, Abel Symp. 2 (2007), 461-491.
    [??.??.????]

  293. P. Baird, A. Fardoun, S. Ouakkas,
    Conformal and semi-conformal biharmonic maps,
    Ann. Global Anal. Geom. 34 (2008), 403-414.
    [25.01.2008]

  294. S. Dragomir, E. Lanconelli,
    Subelliptic harmonic morphisms,
    Osaka J. Math. 46(2009), 411-440.
    [28.01.2008]

  295. V. Abatangelo, S. Dragomir,
    Discrete heat equation morphisms,
    Interdiscip. Inform. Sci. 14(2008), 225-244.
    [18.02.2008]

  296. B. A. Simoes and M. Svensson,
    Twistor spaces, pluriharmonic maps and harmonic morphisms,
    Q. J. Math. 60 (2009), 367-385.
    [28.05.2008]

  297. E. Loubeau, R. Slobodeanu
    A characterization of Dirac morphisms,
    Comm. Math. Phys. 15 (2009), 1089-1102.
    [30.05.2008]

  298. B. Sahin,
    Conformal Riemannian maps between Riemannian manifolds, their harmonicity and decomposition theorems,
    Acta Appl Math 109 (2010), 829-847.
    [23.06.2008]

  299. W. Kozlowski, K. Niedzialomski
    Conformality of a differential with respect to Cheeger-Gromoll type metrics,
    Geom. Dedicata 157 (2012), 227-237.
    [25.09.2008]

  300. P. Baird, R. Pantilie,
    Harmonic morphisms on heaven spaces,
    Bull. Lond. Math. Soc. 41 (2009), 198-204.
    [23.10.2008]

  301. E. Loubeau, R. Slobodeanu,
    Eigenvalues of harmonic almost submersions,
    Geom. Dedicata 145 (2010), 103–126.
    [18.11.2008]

  302. L. B. Huang, Li Bing, A. X. H. Mo,
    Construction of p-harmonic morphisms,
    Acta Math. Sci. Ser. A Chin. Ed. 28 (2008), 232-239.
    [??.??.????]

  303. F. Helein, J. C. Wood
    Harmonic maps,
    Handbook of global analysis, 417-491, Elsevier (2008).
    [??.??.????]

  304. P. Baird, J. C. Wood,
    Harmonic morphisms from Minkowski space and hyperbolic numbers,
    Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 52 (2009), 195-209.
    [23.01.2009]
    Addendum 55 (103), No. 3 (2012), 341.

  305. M. Baker, S. Norine
    Harmonic morphisms and hyperelliptic graphs,
    Int. Math. Res. Not. IMRN 15 (2009), 2914-2955.
    [02.02.2009]

  306. S. Gudmundsson, M. Svensson,
    Harmonic morphisms from solvable Lie groups,
    Math. Proc. Cambridge Philos. Soc. 147 (2009), 389-408.
    [24.02.2009]

  307. D. Chinea
    Harmonicity on maps between almost contact metric manifolds,
    Acta Math. Hungar. 43 (2010), 352-365.
    [26.03.2009]

  308. E. Loubeau, R. Pantilie,
    Harmonic morphisms between Weyl spaces and twistorial maps II,
    Ann. Inst. Fourier (Grenoble) 60 (2010), 433-453.
    [07.04.2009]

  309. P. Nurowski,
    Construction of conjugates functions,
    Ann. Global Anal. Geom. 37 (2010), 321-326.
    [12.06.2009]

  310. J. C. Wood,
    Conformal variational problems, harmonic maps and harmonic morphisms.,
    Rend. Semin. Mat. Univ. Politec. Torino 67 2009, 395-406.
    [23.07.2009]

  311. W. Kozlowski, K. Niedzialomski,
    Differential as a harmonic morphism with respect to Cheeger-Gromoll-type metrics,
    Ann. Global Anal. Geom. 37 (2010), 327-337.
    [02.09.2009]

  312. E. Loubeau, Y-L. Ou,
    Biharmonic maps and morphisms from conformal mappings,
    Tohoku Math. J. 62 (2010), 55-73.
    [29.09.2009]

  313. S. Montaldo, A. Ratto
    A generalisation of the Hopf construction and harmonic morphisms into S^2,
    Ann. Mat. Pura Appl. (4) 189 (2010), 605-613.
    [01.10.2009]

  314. B.-Y. Chen, S. W. Wei,
    $p$-harmonic morphisms, cohomology classes and submersions,
    Tamkang J. Math. 40 2009, 377-382.
    [??.??.????]

  315. R. Pantilie,
    Submersive harmonic maps and morphisms,
    Editura Academiei Romane, Bucuresti (2009).

  316. J. Nordström,
    Harmonic morphisms on homogeneous Hadamard manifolds,
    Master's dissertation, Lund University.
    [07.04.2010]

  317. S. Gudmundsson, J. Nordström,
    Harmonic morphisms from homogeneous Hadamard manifolds,
    Ann. Global Anal. Geom. 39 (2011), 215-230.
    [24.05.2010]

  318. P. Baird, J. C. Wood
    Harmonic morphisms and bicomplex manifolds,
    J. Math. Phys 61 2011, 46-61.
    [11.06.2010]

  319. G. Calvaruso, D. Perrone
    Harmonic morphisms and Riemannian geometry of tangent bundles,
    Ann. Global Anal. Geom. 39 (2010), 187-213.
    [12.07.2010]

  320. S. Heller,
    Harmonic morphisms on conformally flat 3-spheres,
    Bull. London. Math.Soc. 43 (2011), 137-150.
    [06.08.2010]

  321. R. Slobodeanu,
    A note on higher-charge configurations for the Faddeev-Hopf model,
    Contemp. Math. 542 (2011), 239-246.
    [??.??.2010]

  322. C.-L. Bejan,
    A note on $\eta$-Einstein manifolds,
    Contemp. Math. 542 (2011), 261-265.
    [??.??.2010]

  323. R. C. Voicu,
    Ricci curvature properties and stability on 3-dimensional Kenmotsu manifolds,
    Contemp. Math. 542 (2011), 273-278.
    [??.??.2010]

  324. S. Gudmundsson, M. Svensson,
    On the existence of harmonic morphisms from three dimensional Lie groups,
    Contemp. Math. 542 (2011), 279-284.
    [??.??.2010]

  325. S. Marchiafava, R. Pantilie,
    Introduction to harmonic morphisms between Weyl spaces and twistorial maps,
    Editura Fundatiei Universitare, Galati (2010).

  326. Y.-L. Ou, T. Troutman, F. Wilhelm,
    Infinity-harmonic maps and morphisms,
    Differential Geom. Appl. 30 (2009), 164-178.
    [21.01.2011]

  327. R. Slobodeanu,
    Perfect fluids from high power sigma-models,
    Int. J. Geom. Methods Mod. Phys.8 (2011), 1763-1782.
    [04.02.2011]

  328. W.-J. Lu
    Quadratic harmonic morphisms between semi-Riemannian manifolds,
    Beitr. Algebra Geom. 54 (2013), 59-79.
    [12.03.2011]

  329. S. Chossi, P.-A. Nagy,
    Complex homothetic foliations on Kähler manifolds,
    Bull. London Math. Soc. 44 (2012), 113–124.
    [03.06.2011]

  330. V. Arsinte,
    Subharmonic morphisms,
    The International Conference Differential Geometry and Dynamical Systems
    (DGDS-2010), 11–22, BSG Proc., 18,
    Geom. Balkan Press, Bucharest, 2011.
    [??,??,????]

  331. R. Slobodeanu,
    Harmonic morphisms and shear-free perfect fluids coupled with gravity,
    Annali di Matematica (to appear).
    [08.02.2012]

  332. N. Nakauchi, H. Urakawa, S. Gudmundsson,
    Biharmonic maps into a Riemannian manifold of non-positive curvature,
    Geom. Dedicata 169 (2014), 263-272.
    [15.03.2012]

  333. M. T. Mustafa,
    On harmonic morphisms projecting harmonic functions to harmonic functions,
    Abstract and Applied Analysis 2012 Article ID 315757, 8 pages.
    [30.03.2012]

  334. P. Baird, M. Eastwood,
    CR geometry and conformal foliations,
    Ann. Glob. Anal. Geom. 44 (2013), 73-90.
    [22.07.2012]

  335. J.-J. Kim, G. Yun,
    Stability and integrability of horizontally conformal maps and harmonic morphisms,
    Math. Nachr. 286 (2013), 1479–1490.
    [26.12.2012]

  336. J. Nordström,
    Riemannian Lie groups with no left-invariant complex-valued harmonic morphisms,
    Ann. Glob. Anal. Geom. 45 (2014), 1-10.
    [07.03.2013]

  337. N. A. Rehman,
    Harmonic Maps on Kenmotsu Manifolds,
    An. Stiint. Univ. "Ovidius'' Constanta Ser. Mat. 21 (2013), 197-208.
    [??.03.2013]

  338. Y.-L. Ou,
    f-harmonic morphisms between Riemannian manifolds,
    Chin. Ann. Math. Ser. B 35 (2014), 225-236.
    [04.04.2013]

  339. A. M. Cherif, D. Mustapha,
    On generalized $f$-harmonic morphisms,
    Comment. Math. Univ. Carolin. 55, (2014), 17-27
    [29.05.2013]

  340. J. Chen, J. Li,
    Detecting quaternionic maps between hyperkähler manifolds,
    Commun. Math. Stat. 1 (2013), 305–314.
    [18.07.2013]

  341. S. Gudmundsson, M. Svensson, M. Ville,
    Complete minimal submanifolds of compact Lie groups,
    Math. Z. 282 (2016), 993-1005.
    [12.09.2013]

  342. P. Baird, M. Eastwood,
    On functions with a conjugate,
    Annales de l'Institut Fourier 65 (2015), 277-314.
    [23.11.2013]

  343. T. Zawadzki,
    Existence conditions for conformal submersions with totally umbilical fibres,
    Differential Geometry and its Applications 35 (2014), 69-85.
    [??.??.????]

  344. Y.-J. Chiang,
    Developments of harmonic maps, wave maps and Yang-Mills fields into biharmonic maps, biwave maps and bi-Yang-Mills fields,
    Frontiers in Mathematics,
    Birkhäuser/Springer (2013).

  345. B. Sahin, M. A. Akyol,
    Golden maps between Golden Riemannian manifolds and constancy of certain maps,
    Math. Commun. 19 (2014), 333-342.
    [24.01.2014]

  346. S. Maeta,
    Triharmonic morphisms between Riemannian manifolds,
    J. Geom. 105 (2014), 507–527.
    [12.02.2014]

  347. M. Clapp, M. Ghimenti, A. M. Micheletti,
    Solutions to a singularly perturbed supercritical elliptic equation on a Riemannian manifold concentrating at a submanifold,
    J. Math. Anal. Appl. 420 (2014), 314–333.
    [26.02.2014]

  348. S. Gudmundsson, M. Svensson,
    Harmonic morphisms from four-dimensional Lie groups,
    J. Geom. Phys. 83 (2014), 1-11.
    [01.04.2014]

  349. S. Gudmundsson, M. Svensson,
    Harmonic morphisms from homogeneous spaces of positive curvature,
    Math. Proc. Cambridge Philos. Soc. 157 (2014), 321-327.
    [10.04.2014]

  350. S. Gudmundsson,
    Holomorphic harmonic morphisms from four-dimensional non-Einstein manifolds,
    Internat. J. Math. 26, No. 1 (2015) 1550006 (7 pages)
    [21.05.2014]

  351. A. Makki,
    Morphismes harmoniques et deformation de surfaces minimales dans des variétés de dimension 4,
    Doctoral thesis, University of Tour.
    [26.05.2014]

  352. S. Gudmundsson,
    Holomorphic harmonic morphisms from cosymplectic almost Hermitian manifolds,
    Geom. Dedicata 178 (2015), 143-150.
    [01.12.2014]

  353. M. A. Aprodu, M. Aprodu,
    Holomorphic vector bundles on Kähler manifolds and totally geodesic foliations on Euclidean open domains,
    Differential Geom. Appl. 39 (2015), 10-19.
    [01.01.2015]

  354. J. Nordström,
    Curvature conditions for complex-valued harmonic morphisms,
    Differential Geom. Appl. 42 (2015), 44-53.
    [14.07.2015]

  355. J. Nordström,
    On the existence of complex-valued harmonic morphisms,
    Doctoral thesis, Lund University.
    [09.09.2015]

  356. S. Gudmundsson,
    Harmonic morphisms from five-dimensional Lie groups,
    Geom. Dedicata (to appear).
    [11.02.2016]

  357. Y. Luo
    Remarks on the nonexistence of biharmonic maps,
    Arch. Math. 107 (2016), 191-200.
    [17.03.2016]

  358. M. Benyounes, E. Loubeau, R. Pantilie
    Harmonic morphisms and moment maps on hyper-Kähler manifolds,
    Manuscripta Math. (to appear).
    [23.06.2016]

  359. P. Baird, R. Pantilie,
    On Ricci solitons and twistorial harmonic morphisms,
    preprint (2012).

  360. A. Makki, M. Ville,
    On harmonic morphisms from 4-manifolds to Riemann surfaces and local almost Hermitian structures,
    preprint (2013).

  361. J. Nordström,
    Harmonic morphisms and eigenfamilies on the exceptional Lie group G_2,
    preprint (2013).

  362. R. Pantilie,
    (Pluri)Harmonic morphisms and the Penrose-Ward transform ,
    preprint (2015).

  363. M. A. Akyol, B. Sahin,
    Conformal anti-invariant submersions from almost Hermitian manifolds,
    preprint (2015).

  364. M. A. Akyol, B. Sahin,
    Conformal semi-invariant submersions,
    preprint (2015).

  365. S. Gudmundsson, S. Montaldo, A. Ratto,
    Biharmonic functions on the classical compact simple Lie groups,
    preprint (2016).

  366. S. Gudmundsson,
    Biharmonic functions on the special unitary group SU(2),
    preprint (2016).


    Recently found items


     
  367. Y.-J. Chiang, R. Wolak,
    Transversally harmonic morphisms between foliated Riemannian manifolds,
    Southeast Asian Bull. Math. 40 (2016), 171-182.
    [20.07.2013]

  368. M. Jamali, M. H. Shahid, M. A. Choudhary
    Generalized horizontally weakly conformal submersion between semi-Riemannian manifold,
    Afr. Mat. 27 (2015), 1-11.
    [21.06.2014]

  369. N. E. Djaa, A. M. Cherif
    General f-harmonic morphisms,
    Arab J. Math. Sci. 22 (2016), 275-284.
    [07.02.2016]