Harmonic Morphisms: Do They Exist?

Sigmundur Gudmundsson

Department of Mathematics
Faculty of Science
Lund University

Sigmundur.Gudmundsson@math.lu.se

Cagliari - 17 February 2016
Outline

1. Classical Problems
 - Minimal Surfaces in \mathbb{R}^3
 - Harmonic Morphisms in \mathbb{R}^3
 - Holomorphic Functions in Several Variables
Outline

1 Classical Problems
 - Minimal Surfaces in \mathbb{R}^3
 - Harmonic Morphisms in \mathbb{R}^3
 - Holomorphic Functions in Several Variables

2 Harmonic Morphisms
 - Basics
 - Geometric Motivation
 - Homogeneous Spaces
Outline

1 Classical Problems
 - Minimal Surfaces in \mathbb{R}^3
 - Harmonic Morphisms in \mathbb{R}^3
 - Holomorphic Functions in Several Variables

2 Harmonic Morphisms
 - Basics
 - Geometric Motivation
 - Homogeneous Spaces

3 Eigenfamilies - Constructions
 - Definition
 - A Useful Machine
 - The Classical Semisimple Lie Groups
Outline

1 Classical Problems
 - Minimal Surfaces in \mathbb{R}^3
 - Harmonic Morphisms in \mathbb{R}^3
 - Holomorphic Functions in Several Variables

2 Harmonic Morphisms
 - Basics
 - Geometric Motivation
 - Homogeneous Spaces

3 Eigenfamilies - Constructions
 - Definition
 - A Useful Machine
 - The Classical Semisimple Lie Groups

4 Orthogonal Harmonic Families - Constructions
 - Another Useful Machine
 - Nilpotent and Solvable Lie Groups
 - Symmetric Spaces G/K of Non-Compact Type
 - Symmetric Spaces U/K of Compact Type
 - Examples
 - Homogeneous Spaces of Positive Curvature
Outline

1 Classical Problems
 • Minimal Surfaces in \mathbb{R}^3
 • Harmonic Morphisms in \mathbb{R}^3
 • Holomorphic Functions in Several Variables

2 Harmonic Morphisms
 • Basics
 • Geometric Motivation
 • Homogeneous Spaces

3 Eigenfamilies - Constructions
 • Definition
 • A Useful Machine
 • The Classical Semisimple Lie Groups

4 Orthogonal Harmonic Families - Constructions
 • Another Useful Machine
 • Nilpotent and Solvable Lie Groups
 • Symmetric Spaces G/K of Non-Compact Type
 • Symmetric Spaces U/K of Compact Type
 • Examples
 • Homogeneous Spaces of Positive Curvature
Definition 1.1 (minimal surface)

Let Σ_t with $t \in (-\epsilon, \epsilon)$ be a family of surfaces with a common boundary curve i.e. $\partial \Sigma_0 = \partial \Sigma_t$ for all $t \in (-\epsilon, \epsilon)$. Then Σ_0 is said to be a **minimal surface** if it is a critical point for the area functional i.e.

$$\left. \frac{d}{dt} \left(\int_{\Sigma_t} dA \right) \right|_{t=0} = 0.$$
Definition 1.1 (minimal surface)

Let Σ_t with $t \in (-\epsilon, \epsilon)$ be a family of surfaces with a common boundary curve i.e. $\partial \Sigma_0 = \partial \Sigma_t$ for all $t \in (-\epsilon, \epsilon)$. Then Σ_0 is said to be a **minimal surface** if it is a critical point for the area functional i.e.

$$\frac{d}{dt} \left(\int_{\Sigma_t} dA \right)|_{t=0} = 0.$$

Theorem 1.2 (zero mean curvature)

A surface Σ in \mathbb{R}^3 is minimal if and only if its mean curvature vanishes i.e.

$$H = \frac{k_1 + k_2}{2} \equiv 0.$$
There is an interesting connection between the theory of minimal surfaces, harmonic functions and hence complex analysis.

Theorem 1.3 (the Weierstrass representation - 1866)

Every minimal surface Σ in \mathbb{R}^3 can locally be parametrized by a conformal and harmonic map $\phi : W \subset \mathbb{C} \rightarrow \mathbb{R}^3$ of the form

$$
\phi : z \mapsto \text{Re} \int_{z_0}^{z} f(w) \left[1 - g^2(w), i(1 + g^2(w)), 2g(w) \right] dw,
$$

where $f, g : W \subset \mathbb{C} \rightarrow \mathbb{C}$ are two holomorphic functions.

$$
\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0,
$$

$$
\left(\langle \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y} \rangle = 0 \text{ and } |\frac{\partial \phi}{\partial x}|^2 = |\frac{\partial \phi}{\partial y}|^2 \right) \Leftrightarrow \left(\frac{\partial \phi}{\partial x} + i \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial x} + i \frac{\partial \phi}{\partial y} \right) = 0.
$$
Definition 1.4 (harmonic morphism)

The map \(\phi = u + iv : U \subset \mathbb{R}^3 \to \mathbb{C} \) is said to be a \textbf{harmonic morphism} if the composition \(f \circ \phi \) with any \textbf{holomorphic} function \(f : W \subset \mathbb{C} \to \mathbb{C} \) is \textbf{harmonic}.

\[\Delta (f \circ \phi) = \frac{\partial f}{\partial z} \cdot \Delta \phi + \frac{\partial^2 f}{\partial z^2} \cdot \langle \nabla \phi, \nabla \phi \rangle = 0. \]
Definition 1.4 (harmonic morphism)

The map $\phi = u + iv : U \subset \mathbb{R}^3 \to \mathbb{C}$ is said to be a **harmonic morphism** if the composition $f \circ \phi$ with any **holomorphic** function $f : W \subset \mathbb{C} \to \mathbb{C}$ is harmonic.

Theorem 1.5 (Jacobi 1848)

The map $\phi = u + iv : U \subset \mathbb{R}^3 \to \mathbb{C}$ is a harmonic morphism if and only if it is harmonic and horizontally (weakly) conformal i.e.

$$\Delta u = \Delta v = 0, \quad \left(\langle \nabla u, \nabla v \rangle = 0 \text{ and } |\nabla u|^2 = |\nabla v|^2 \right).$$
Definition 1.4 (harmonic morphism)

The map $\phi = u + iv : U \subset \mathbb{R}^3 \to \mathbb{C}$ is said to be a harmonic morphism if the composition $f \circ \phi$ with any holomorphic function $f : W \subset \mathbb{C} \to \mathbb{C}$ is harmonic.

Theorem 1.5 (Jacobi 1848)

The map $\phi = u + iv : U \subset \mathbb{R}^3 \to \mathbb{C}$ is a harmonic morphism if and only if it is harmonic and horizontally (weakly) conformal i.e.

$$\Delta u = \Delta v = 0, \quad \left(\langle \nabla u, \nabla v \rangle = 0 \quad \text{and} \quad |\nabla u|^2 = |\nabla v|^2 \right).$$

Proof.

$$\Delta (f \circ \phi) = \frac{\partial f}{\partial z} \cdot \Delta \phi + \frac{\partial^2 f}{\partial z^2} \cdot \langle \nabla \phi, \nabla \phi \rangle = 0.$$
Theorem 1.6 (the Jacobi representation - 1848)

Let \(f, g : W \subset \mathbb{C} \rightarrow \mathbb{C} \) be holomorphic functions, then every local solution \(z : U \subset \mathbb{R}^3 \rightarrow \mathbb{C} \) to the equation

\[
\langle f(z(x))\left[1 - g^2(z(x)), i(1 + g^2(z(x))), 2g(z(x))\right], x \rangle = 1
\]

is a harmonic morphism.
Theorem 1.6 (the Jacobi representation - 1848)

Let $f, g : W \subset \mathbb{C} \to \mathbb{C}$ be **holomorphic** functions, then every local solution $z : U \subset \mathbb{R}^3 \to \mathbb{C}$ to the equation

$$
\langle f(z(x)) \left[1 - g^2(z(x)), i(1 + g^2(z(x))), 2g(z(x)) \right], x \rangle = 1
$$

is a harmonic morphism.

Theorem 1.7 (Baird, Wood 1988)

Every local harmonic morphism $z : U \to \mathbb{C}$ in the Euclidean \mathbb{R}^3 is obtained this way.
Example 1.8 (the outer disc example)

Let \(r \in \mathbb{R}^+ \) and choose \(g(z) = z, f(z) = -1/2irz \) then we obtain

\[
(x_1 - ix_2)z^2 - 2(x_3 + ir)z - (x_1 + ix_2) = 0
\]

with the two solutions

\[
z_r^\pm = \frac{-(x_3 + ir) \pm \sqrt{x_1^2 + x_2^2 + x_3^2 - r^2 + 2irx_3}}{x_1 - ix_2}.
\]
Let $\phi = u + iv : U \to \mathbb{C}$ be a **holomorphic** function defined on an open subset U of \mathbb{C}^m. Then it satisfies the Cauchy-Riemann equations i.e. if for each $k = 1, 2, \ldots, m$

$$\frac{\partial u}{\partial x_k} = \frac{\partial v}{\partial y_k} \quad \text{and} \quad \frac{\partial u}{\partial y_k} = -\frac{\partial v}{\partial x_k}.$$

As a direct consequence of these equations we get

$$\frac{\partial^2 u}{\partial x_k^2} = \frac{\partial^2 v}{\partial x_k \partial y_k} = -\frac{\partial^2 u}{\partial y_k^2} \quad \text{and} \quad \frac{\partial^2 v}{\partial x_k^2} = -\frac{\partial^2 u}{\partial x_k \partial y_k} = -\frac{\partial^2 v}{\partial y_k^2}.$$
Let $\phi = u + iv : U \to \mathbb{C}$ be a **holomorphic** function defined on an open subset U of \mathbb{C}^m. Then it satisfies the Cauchy-Riemann equations i.e. if for each $k = 1, 2, \ldots, m$

$$\frac{\partial u}{\partial x_k} = \frac{\partial v}{\partial y_k} \quad \text{and} \quad \frac{\partial u}{\partial y_k} = -\frac{\partial v}{\partial x_k}.$$

As a direct consequence of these equations we get

$$\frac{\partial^2 u}{\partial x_k^2} = \frac{\partial^2 v}{\partial x_k \partial y_k} = -\frac{\partial^2 u}{\partial y_k^2} \quad \text{and} \quad \frac{\partial^2 v}{\partial x_k^2} = -\frac{\partial^2 u}{\partial x_k \partial y_k} = -\frac{\partial^2 v}{\partial y_k^2}.$$

This implies that the functions $u, v : U \to \mathbb{R}$ are **harmonic**, hence

$$\Delta \phi = \Delta (u + iv) = \Delta u + i\Delta v = 0.$$

For the two gradients $\nabla u, \nabla v$ we have the following

$$\langle \nabla \phi, \nabla \phi \rangle = \langle \nabla (u + iv), \nabla (u + iv) \rangle = 0.$$

If $\psi : U \to \mathbb{C}$ is another **holomorphic** function then the polar identity

$$4\langle \nabla \phi, \nabla \psi \rangle = \langle \nabla (\phi + \psi), \nabla (\phi + \psi) \rangle - \langle \nabla (\phi - \psi), \nabla (\phi - \psi) \rangle$$

gives

$$\langle \nabla \phi, \nabla \psi \rangle = 0.$$
Definition 2.1 (harmonic morphism)

A map $\phi : (M^m, g) \to (N^n, h)$ between Riemannian manifolds is called a harmonic morphism if, for any harmonic function $f : U \to \mathbb{R}$ defined on an open subset U of N with $\phi^{-1}(U)$ non-empty, $f \circ \phi : \phi^{-1}(U) \to \mathbb{R}$ is a harmonic function.
Definition 2.1 (harmonic morphism)

A map \(\phi : (M^m, g) \to (N^n, h) \) between Riemannian manifolds is called a **harmonic morphism** if, for any harmonic function \(f : U \to \mathbb{R} \) defined on an open subset \(U \) of \(N \) with \(\phi^{-1}(U) \) non-empty, \(f \circ \phi : \phi^{-1}(U) \to \mathbb{R} \) is a harmonic function.

Theorem 2.2 (Fuglede 1978, Ishihara 1979)

A map \(\phi : (M, g) \to (N, h) \) between Riemannian manifolds is a harmonic morphism if and only if it is **harmonic and horizontally (weakly) conformal**.
For local coordinates x on M and y on N, we have the \textbf{non-linear} system

$$\tau(\phi) = \sum_{i,j=1}^{m} g^{ij}_{\gamma} \left(\frac{\partial^2 \phi^\gamma}{\partial x_i \partial x_j} - \sum_{k=1}^{m} \hat{\Gamma}^{k}_{ij} \frac{\partial \phi^\gamma}{\partial x_k} + \sum_{\alpha,\beta=1}^{n} \Gamma^{\gamma}_{\alpha\beta} \circ \phi \frac{\partial \phi^\alpha}{\partial x_i} \frac{\partial \phi^\beta}{\partial x_j} \right) = 0,$$

where $\phi^\alpha = y^\alpha \circ \phi$ and $\hat{\Gamma}, \Gamma$ are the Christoffel symbols on M, N, resp.
(harmonicity)

For local coordinates x on M and y on N, we have the non-linear system

$$
\tau(\phi) = \sum_{i,j=1}^{m} g^{ij} \left(\frac{\partial^2 \phi^\gamma}{\partial x_i \partial x_j} - \sum_{k=1}^{m} \hat{\Gamma}_{ij}^k \frac{\partial \phi^\gamma}{\partial x_k} + \sum_{\alpha,\beta=1}^{n} \Gamma_{\alpha \beta}^\gamma \circ \phi \frac{\partial \phi^\alpha}{\partial x_i} \frac{\partial \phi^\beta}{\partial x_j} \right) = 0,
$$

where $\phi^\alpha = y^\alpha \circ \phi$ and $\hat{\Gamma}, \Gamma$ are the Christoffel symbols on M, N, resp.

(horizontal conformality)

There exists a continuous function $\lambda : M \to \mathbb{R}_0^+$ such that for all $\alpha, \beta = 1, 2, \ldots, n$

$$
\sum_{i,j=1}^{m} g^{ij}(x) \frac{\partial \phi^\alpha}{\partial x_i}(x) \frac{\partial \phi^\beta}{\partial x_j}(x) = \lambda^2(x) h^{\alpha \beta}(\phi(x)).
$$

This is a first order non-linear system of $\left(\binom{n+1}{2} - 1\right)$ equations.
Theorem 2.3 (Baird, Eells 1981)

Let $\phi : (M, g) \to (N^2, h)$ be a horizontally conformal map from a Riemannian manifold to a surface. Then ϕ is harmonic if and only if its fibres are minimal at regular points ϕ.
Theorem 2.3 (Baird, Eells 1981)

Let $\phi : (M, g) \to (N^2, h)$ be a horizontally conformal map from a Riemannian manifold to a surface. Then ϕ is harmonic if and only if its fibres are minimal at regular points ϕ.

The problem is invariant under isometries on (M, g). If the codomain is a surface ($n = 2$) then it is also invariant under conformal changes $\sigma^2 h$ of the metric on (N^2, h). This means, at least for local studies, that (N^2, h) can be chosen to be the standard complex plane \mathbb{C}.
Definition 2.4 (Riemannian homogeneous space)

A Riemannian manifold \((M, g)\) is said to be **homogeneous** if it possesses a transitive group \(G\) of isometries i.e. if for all \(p, q \in M\) there exists an isometry \(\phi_{qp} : M \to M\) such that \(\phi_{qp}(p) = q\).
Definition 2.4 (Riemannian homogeneous space)

A Riemannian manifold \((M, g)\) is said to be **homogeneous** if it possesses a transitive group \(G\) of isometries i.e. if for all \(p, q \in M\) there exists an isometry \(\phi_{qp} : M \to M\) such that \(\phi_{qp}(p) = q\).

Example 2.5 (Riemannian Lie group)

Every **Lie group** \((G, g)\) equipped with a left-invariant Riemannian metric acts transitively on itself.
Definition 2.4 (Riemannian homogeneous space)

A Riemannian manifold (M, g) is said to be **homogeneous** if it possesses a transitive group G of isometries i.e. if for all $p, q \in M$ there exists an isometry $\phi_{qp} : M \rightarrow M$ such that $\phi_{qp}(p) = q$.

Example 2.5 (Riemannian Lie group)

Every **Lie group** (G, g) equipped with a left-invariant Riemannian metric acts transitively on itself.

Example 2.6 (Riemannian symmetric space)

Every Riemannian **symmetric space** $M = (G/K, g)$ is homogeneous.
Example 2.7 (the nilpotent Lie group \(\text{Nil}^3 \))

\[(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in \text{SL}_3(\mathbb{R}).\]

The left-invariant metric, with orthonormal basis

\[\{ X = \partial / \partial x, \ Y = \partial / \partial y, \ Z = \partial / \partial z \} \]

at the neutral element \(e = (0, 0, 0) \), is given by

\[ds^2 = dx^2 + dy^2 + (dz - xdy)^2.\]
Example 2.7 (the nilpotent Lie group Nil3)

$(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in \text{SL}_3(\mathbb{R})$.

The left-invariant metric, with orthonormal basis

$\{ X = \partial/\partial x, \ Y = \partial/\partial y, \ Z = \partial/\partial z \}$

at the neutral element $e = (0, 0, 0)$, is given by

$$ds^2 = dx^2 + dy^2 + (dz - xdy)^2.$$

(Baird, Wood 1990): Every solution is a restriction of the globally defined harmonic morphism $\phi : \text{Nil}^3 \rightarrow \mathbb{C}$ with

$$\phi : \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mapsto x + iy.$$
Example 2.8 (the solvable Lie group Sol^3)

$$(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix} \in \text{SL}_3(\mathbb{R}).$$

The left-invariant metric, with orthonormal basis

$$\{ X = \partial / \partial x, \ Y = \partial / \partial y, \ Z = \partial / \partial z \}$$

at the neutral element $e = (0, 0, 0)$, is given by

$$ds^2 = e^{2z} \, dx^2 + e^{-2z} \, dy^2 + dz^2.$$
Example 2.8 (the solvable Lie group Sol^3)

\[(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix} \in \text{SL}_3(\mathbb{R}).\]

The left-invariant metric, with orthonormal basis

\[
\{ \ X = \partial/\partial x, \ Y = \partial/\partial y, \ Z = \partial/\partial z \ \}
\]

at the neutral element $e = (0, 0, 0)$, is given by

\[ds^2 = e^{2z} \, dx^2 + e^{-2z} \, dy^2 + dz^2.\]

(Baird, Wood 1990): No solutions exist, not even locally.

\[e^{-2z} \frac{\partial^2 \phi}{\partial x^2} + e^{2z} \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0,\]

\[e^{-2z} \left(\frac{\partial \phi}{\partial x} \right)^2 + e^{2z} \left(\frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 = 0.\]
Definition 3.1 (Laplacian, conformality operator)

For functions $\phi, \psi : (M, g) \to \mathbb{C}$ the metric g induces the complex-valued **Laplacian** $\tau(\phi)$ and the symmetric bilinear **conformality operator** κ by

$$\kappa(\phi, \psi) = g(\nabla \phi, \nabla \psi).$$
Definition 3.1 (Laplacian, conformality operator)

For functions $\phi, \psi : (M, g) \to \mathbb{C}$ the metric g induces the complex-valued Laplacian $\tau(\phi)$ and the symmetric bilinear conformality operator κ by

$$\kappa(\phi, \psi) = g(\nabla \phi, \nabla \psi).$$

The harmonicity and the horizontal conformality of $\phi : (M, g) \to \mathbb{C}$ are then given by the following relations

$$\tau(\phi) = 0 \quad \text{and} \quad \kappa(\phi, \phi) = 0.$$
Definition 3.1 (Laplacian, conformality operator)

For functions $\phi, \psi : (M, g) \to \mathbb{C}$ the metric g induces the complex-valued \textbf{Laplacian} $\tau(\phi)$ and the symmetric bilinear \textbf{conformality operator} κ by

$$
\kappa(\phi, \psi) = g(\nabla \phi, \nabla \psi).
$$

The \textbf{harmonicity} and the \textbf{horizontal conformality} of $\phi : (M, g) \to \mathbb{C}$ are then given by the following relations

$$
\tau(\phi) = 0 \quad \text{and} \quad \kappa(\phi, \phi) = 0.
$$

Definition 3.2 (eigenfamily)

A set $\mathcal{E} = \{\phi_\alpha : (M, g) \to \mathbb{C} \mid \alpha \in I\}$ of complex-valued functions is called an \textbf{eigenfamily} on (M, g) if there exist complex numbers $\lambda, \mu \in \mathbb{C}$ such that for all $\phi, \psi \in \mathcal{E}$

$$
\tau(\phi) = \lambda \phi \quad \text{and} \quad \kappa(\phi, \psi) = \mu \phi \psi.
$$
Theorem 3.3 (SG, Sakovich 2008)

Let \((M, g)\) be a Riemannian manifold and \(\mathcal{E} = \{\phi_1, \ldots, \phi_n\}\) be a \textbf{finite eigenfamily} of complex-valued functions on \(M\). If \(P, Q : \mathbb{C}^n \to \mathbb{C}\) are linearly independent homogeneous polynomials of the same positive degree then the quotient

\[
P(\phi_1, \ldots, \phi_n)/Q(\phi_1, \ldots, \phi_n)
\]

is a \textbf{non-constant harmonic morphism} on the open and dense subset

\[
\{p \in M | Q(\phi_1(p), \ldots, \phi_n(p)) \neq 0\}.
\]

The authors apply this machine to construct solutions on the \textbf{classical semisimple} Lie groups \(\text{SO}(n), \text{SU}(n), \text{Sp}(n), \text{SL}_n(\mathbb{R}), \text{SU}^*(2n)\) and \(\text{Sp}(n, \mathbb{R})\) equipped with their standard Riemannian metrics.

They also develop a \textbf{duality principle} and use this to construct solutions from the \textbf{semisimple} Lie groups \(\text{SO}(n), \text{SU}(n), \text{Sp}(n), \text{SL}_n(\mathbb{R}), \text{SU}^*(2n), \text{Sp}(n, \mathbb{R}), \text{SO}^*(2n), \text{SO}(p, q), \text{SU}(p, q)\) and \(\text{Sp}(p, q)\) equipped with their standard dual semi-Riemannian metrics.
Equip the special orthogonal group

\[\text{SO}(n) = \{ x \in \text{GL}_n(\mathbb{R}) \mid x^t \cdot x = I_n, \ \text{det} \ x = 1 \} \]

with the standard Riemannian metric \(g \) induced by the Euclidean scalar product \(g(X, Y) = \text{trace}(X^t \cdot Y) \) on the Lie algebra

\[\text{so}(n) = \{ X \in \mathfrak{gl}_n(\mathbb{R}) \mid X^t + X = 0 \}. \]
Equip the special orthogonal group

\[\text{SO}(n) = \{ x \in \text{GL}_n(\mathbb{R}) \mid x^t \cdot x = I_n, \det x = 1 \} \]

with the standard Riemannian metric \(g \) induced by the Euclidean scalar product \(g(X, Y) = \text{trace}(X^t \cdot Y) \) on the Lie algebra

\[\text{so}(n) = \{ X \in \text{gl}_n(\mathbb{R}) \mid X^t + X = 0 \}. \]

Lemma 3.4 (SG, Sakovich 2008)

For \(1 \leq i, j \leq n \), let \(x_{ij} : \text{SO}(n) \to \mathbb{R} \) be the real valued coordinate functions given by \(x_{ij} : x \mapsto \langle e_i, x \cdot e_j \rangle \) where \(\{ e_1, \ldots, e_n \} \) is the canonical basis for \(\mathbb{R}^n \). Then the following relations hold

\[\tau(x_{ij}) = -\frac{(n-1)}{2} x_{ij}, \quad \kappa(x_{ij}, x_{kl}) = -\frac{1}{2} (x_{il} x_{kj} - \delta_{jl} \delta_{ik}). \]
Theorem 3.5 (SG, Sakovich 2008)

Let \(p \in \mathbb{C}^n \) be a non-zero isotropic element i.e. \(\langle p, p \rangle = 0 \). Then

\[
\mathcal{E}_p = \{ \phi_a : \text{SO}(n) \to \mathbb{C} \mid \phi_a(x) = \langle p, x \cdot a \rangle, \ a \in \mathbb{C}^n \}.
\]

is an eigenfamily on \(\text{SO}(n) \).
Theorem 3.5 (SG, Sakovich 2008)

Let $p \in \mathbb{C}^n$ be a non-zero isotropic element i.e. $\langle p, p \rangle = 0$. Then

$$
\mathcal{E}_p = \{ \phi_a : \text{SO}(n) \to \mathbb{C} \mid \phi_a(x) = \langle p, x \cdot a \rangle, \ a \in \mathbb{C}^n \}.
$$

is an eigenfamily on $\text{SO}(n)$

Example 3.6 (eigenfamilies on $\text{SO}(n)$)

For $z, w \in \mathbb{C}$, let p be the isotropic element of \mathbb{C}^4 given by

$$
p(z, w) = (1 + zw, i(1 - zw), i(z + w), z - w).
$$

This gives us the complex 2-dimensional deformation of eigenfamilies \mathcal{E}_p each consisting of functions $\phi_a : \text{SO}(4) \to \mathbb{C}$ with

$$
\phi_a(x) = (1 + zw)(x_{11}a_1 + x_{21}a_2 + x_{31}a_3 + x_{41}a_4) \\
+ i(1 - zw)(x_{12}a_1 + x_{22}a_2 + x_{32}a_3 + x_{42}a_4) \\
+ i(z + w)(x_{13}a_1 + x_{23}a_2 + x_{33}a_3 + x_{43}a_4) \\
+ (z - w)(x_{14}a_1 + x_{24}a_2 + x_{34}a_3 + x_{44}a_4)
$$
Definition 4.1 (orthogonal harmonic family)

A set $\Omega = \{\phi_\alpha : (M, g) \to \mathbb{C} \mid \alpha \in I\}$ of complex-valued functions is called an **orthogonal harmonic family** on (M, g) if for all $\phi, \psi \in \Omega$

$$\tau(\phi) = 0 \quad \text{and} \quad \kappa(\phi, \psi) = 0.$$
Definition 4.1 (orthogonal harmonic family)

A set $\Omega = \{\phi_\alpha : (M, g) \to \mathbb{C} \mid \alpha \in I\}$ of complex-valued functions is called an orthogonal harmonic family on (M, g) if for all $\phi, \psi \in \Omega$

$$\tau(\phi) = 0 \quad \text{and} \quad \kappa(\phi, \psi) = 0.$$

Example 4.2

Let $\Omega = \{\phi_\alpha : (M, g, J) \to \mathbb{C} \mid \alpha \in I\}$ be a collection of holomorphic functions on a Kähler manifold. Then Ω is an orthogonal harmonic family.
Theorem 4.3 (SG 1997)

Let \((M, g)\) be a Riemannian manifold and \(U\) be an open subset of \(\mathbb{C}^n\) containing the image of \(\Phi = (\phi_1, \ldots, \phi_n) : M \to \mathbb{C}^n\). Further let

\[H = \{ F_\alpha : U \to \mathbb{C} \mid \alpha \in I \} \]

be a collection of \textbf{holomorphic} functions defined on \(U\). If the finite set

\[\Omega = \{ \phi_k : (M, g) \to \mathbb{C} \mid k = 1, \ldots, n \} \]

is an \textbf{orthogonal harmonic family} on \((M, g)\) then

\[\Omega_H = \{ \psi : M \to \mathbb{C} \mid \psi = F(\phi_1, \ldots, \phi_n), \ F \in H \} \]

is again an \textbf{orthogonal harmonic family}.
Let G be a connected and simply connected Lie group with Lie algebra \mathfrak{g}. Then the natural projection $\pi : \mathfrak{g} \to \mathfrak{a} = \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ to the abelian algebra \mathfrak{a} is a Lie algebra homomorphism inducing a natural group epimorphism $\Phi : G \to \mathbb{R}^d$ with $d = \dim \mathfrak{a}$.
Let G be a connected and simply connected Lie group with Lie algebra \mathfrak{g}. Then the natural projection $\pi : \mathfrak{g} \to \mathfrak{a} = \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ to the abelian algebra \mathfrak{a} is a Lie algebra homomorphism inducing a **natural group epimorphism** $\Phi : G \to \mathbb{R}^d$ with $d = \dim \mathfrak{a}$.

Fact 4.4 (semisimple - solvable - nilpotent)

*If the group G is semisimple then $d = 0$, if G is solvable then $d \geq 1$ and if G is nilpotent then $d \geq 2$.***
Let G be a connected and simply connected Lie group with Lie algebra \mathfrak{g}. Then the natural projection $\pi : \mathfrak{g} \to \mathfrak{a} = \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ to the abelian algebra \mathfrak{a} is a Lie algebra homomorphism inducing a natural group epimorphism $\Phi : G \to \mathbb{R}^d$ with $d = \dim \mathfrak{a}$.

Fact 4.4 (semisimple - solvable - nilpotent)

If the group G is semisimple then $d = 0$, if G is solvable then $d \geq 1$ and if G is nilpotent then $d \geq 2$.

Equip \mathbb{R}^d with its standard Euclidean metric and the Lie group G with a left-invariant Riemannian metric g such that the natural group epimorphism $\Phi : G \to \mathbb{R}^d$ is a *Riemannian submersion*. Then the kernel $[\mathfrak{g}, \mathfrak{g}]$ of the linear map $\pi : \mathfrak{g} \to \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ generates a left-invariant Riemannian foliation \mathcal{V} on (G, g) with orthogonal distribution $\mathcal{H} = [\mathfrak{g}, \mathfrak{g}]^\perp$.

Theorem 4.5 (SG, Svensson 2009)

Let $\mathcal{B} = \{X_1, \ldots, X_d\}$ be an ONB for the horizontal subspace $[\mathfrak{g}, \mathfrak{g}]^\perp$ of \mathfrak{g} and $\xi \in \mathbb{C}^d$ be given by $\xi = (\text{trace } \text{ad} X_1, \ldots, \text{trace } \text{ad} X_d)$. For a maximal isotropic subspace V of \mathbb{C}^d put

$$V_{\xi} = \{v \in V \mid \langle \xi, v \rangle = 0\}.$$

If the real dimension of the isotropic subspace V_{ξ} is at least 2 then

$$\Omega = \{\phi_v(x) = \langle \Phi(x), v \rangle \mid v \in V_{\xi}\}$$

is an orthogonal harmonic family on (G, g).

Proof. The tension field of Φ satisfies

$$\tau(\Phi)(p) = d\sum_{k=1}^{d} (\text{trace } \text{ad} X_k) d\Phi e(X_k).$$
Theorem 4.5 (SG, Svensson 2009)

Let $\mathcal{B} = \{X_1, \ldots, X_d\}$ be an ONB for the horizontal subspace $[\mathfrak{g}, \mathfrak{g}]^\perp$ of \mathfrak{g} and $\xi \in \mathbb{C}^d$ be given by $\xi = (\text{trace } \text{ad} X_1, \ldots, \text{trace } \text{ad} X_d)$. For a maximal isotropic subspace V of \mathbb{C}^d put

$$V_\xi = \{v \in V \mid \langle \xi, v \rangle = 0\}.$$

If the real dimension of the isotropic subspace V_ξ is at least 2 then

$$\Omega = \{\phi_v(x) = \langle \Phi(x), v \rangle \mid v \in V_\xi\}$$

is an orthogonal harmonic family on (G, g).

Proof.

The tension field of Φ satisfies

$$\tau(\Phi)(p) = \sum_{k=1}^d (\text{trace } \text{ad} X_k) d\Phi_e(X_k).$$
Example 4.6

For the nilpotent Riemannian Lie group

\[
N_n = \left\{ \begin{pmatrix}
1 & x_{12} & \cdots & x_{1,n-1} & x_{1n} \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & 1 & x_{n-1,n} \\
0 & \cdots & \cdots & 0 & 1
\end{pmatrix} \in \text{SL}_n(\mathbb{R}) \mid x_{ij} \in \mathbb{R} \right\}.
\]

the natural group epimorphism \(\Phi : N_n \to \mathbb{R}^{n-1} \) is given by

\[
\Phi(x) = (x_{12}, \ldots, x_{n-1,n}).
\]
Example 4.7

For the solvable Riemannian Lie group

\[
S_n = \left\{ \begin{pmatrix}
e^{t_1} & x_{12} & \cdots & x_{1,n-1} & x_{1n} \\
0 & e^{t_2} & \cdots & x_{2,n-1} & x_{2n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & e^{t_{n-1}} & x_{n-1,n} \\
0 & \cdots & 0 & 0 & e^{t_n}
\end{pmatrix} \in \text{GL}_n(\mathbb{R}) \mid x_{ij}, t_i \in \mathbb{R}\right\}
\]

the natural group epimorphism \(\Phi : S_n \to \mathbb{R}^n \) is given by

\[
\Phi(x) = (t_1, t_2, \ldots, t_n)
\]

and the vector \(\xi \in \mathbb{C}^n \) satisfies

\[
\xi = ((n + 1) - 2, (n + 1) - 4, \ldots, (n + 1) - 2n).
\]
Let \((M, g)\) be an irreducible Riemannian \textbf{symmetric space} of \textbf{non-compact type} and write \(M = G/K\) with \(G\) a semisimple, connected and simply connected Lie group and \(K\) a maximal compact subgroup of \(G\).
Let (M, g) be an irreducible Riemannian symmetric space of non-compact type and write $M = G/K$ with G a semisimple, connected and simply connected Lie group and K a maximal compact subgroup of G.

Let $G = NAK$ be an Iwasawa decomposition of G, where N is nilpotent and A is abelian.
Let (M, g) be an irreducible Riemannian symmetric space of non-compact type and write $M = G/K$ with G a semisimple, connected and simply connected Lie group and K a maximal compact subgroup of G.

Let $G = NAK$ be an Iwasawa decomposition of G, where N is nilpotent and A is abelian.

Fact 4.8 (solvable Lie group - rank)

The symmetric space (M, g) can be identified with the solvable subgroup $S = NA$ of G and its rank r is the dimension of abelian subgroup A.
Let \((M, g)\) be an irreducible Riemannian symmetric space of non-compact type and write \(M = G/K\) with \(G\) a semisimple, connected and simply connected Lie group and \(K\) a maximal compact subgroup of \(G\).

Let \(G = NAK\) be an Iwasawa decomposition of \(G\), where \(N\) is nilpotent and \(A\) is abelian.

Fact 4.8 (solvable Lie group - rank)

The symmetric space \((M, g)\) can be identified with the solvable subgroup \(S = NA\) of \(G\) and its rank \(r\) is the dimension of abelian subgroup \(A\).

Let \(s, n, a\) be the Lie algebras of \(S, N, A\), respectively. For this situation we have \(s = a + n = a + [s, s]\), hence

\[a = s/[s, s].\]
With a series of different methods we have obtained the following result:

Theorem 4.9 (SG, Svensson 2009)

Let \((M, g)\) be an irreducible Riemannian symmetric space other than \(G^*_2/\text{SO}(4)\) or its compact dual \(G_2/\text{SO}(4)\). Then for each point \(p \in M\) there exists a non-constant complex-valued harmonic morphism \(\phi : U \rightarrow \mathbb{C}\) defined on an open neighbourhood \(U\) of \(p\). If the space \((M, g)\) is of non-compact type then the domain \(U\) can be chosen to be the whole of \(M\).
With a series of different methods we have obtained the following result:

Theorem 4.9 (SG, Svensson 2009)

Let \((M, g)\) be an irreducible Riemannian symmetric space other than \(G_2^*/\text{SO}(4)\) or its compact dual \(G_2/\text{SO}(4)\). Then for each point \(p \in M\) there exists a non-constant complex-valued harmonic morphism \(\phi : U \rightarrow \mathbb{C}\) defined on an open neighbourhood \(U\) of \(p\). If the space \((M, g)\) is of non-compact type then the domain \(U\) can be chosen to be the whole of \(M\).

An essential tool is the following **Duality Principle**:

Theorem 4.10 (SG, Svensson 2006)

Let \(\mathcal{F}\) be a family of local maps \(\phi : W \subset G/K \rightarrow \mathbb{C}\) and \(\mathcal{F}^*\) be the dual family consisting of the local maps \(\phi^* : W^* \subset U/K \rightarrow \mathbb{C}\). Then \(\mathcal{F}^*\) is a local orthogonal harmonic family on \(U/K\) if and only if \(\mathcal{F}\) is a local orthogonal harmonic family on \(G/K\).
The **Duality Principle** explains the following.

Example 4.11 (Baird, Eells 1981)

The map \(\phi : U \subset S^3 \subset \mathbb{R}^4 = \mathbb{C}^2 \rightarrow \mathbb{C} \) given by

\[
\phi : (x_1, x_2, x_3, x_4) \mapsto \frac{x_1 + ix_2}{x_3 + ix_4}
\]

is a **locally defined** harmonic morphism.
The **Duality Principle** explains the following.

Example 4.11 (Baird, Eells 1981)

The map \(\phi : U \subset S^3 \subset \mathbb{R}^4 = \mathbb{C}^2 \rightarrow \mathbb{C} \) given by

\[
\phi : (x_1, x_2, x_3, x_4) \mapsto \frac{x_1 + ix_2}{x_3 + ix_4}
\]

is a **locally defined** harmonic morphism.

Example 4.12 (SG 1996)

The map \(\phi : H^3 \subset \mathbb{R}^4 \rightarrow \mathbb{C} \) given by

\[
\phi : (x_1, x_2, x_3, x_4) \mapsto \frac{x_1 + ix_2}{x_3 - x_4}
\]

is a **globally defined** harmonic morphism.
Our existence result for symmetric spaces has the following **interesting** consequence:

Theorem 4.13 (SG, Svensson 2013)

Let \((M, g)\) be a Riemannian **homogeneous space of positive curvature** other than the Berger space \(\text{Sp}(2)/\text{SU}(2)\). Then \(M\) admits local complex-valued harmonic morphisms.
Fact 5.1

Every Riemannian homogeneous space \((M, g)\) of dimension 3 or 4 is either symmetric or a Lie group with a left-invariant metric.
Fact 5.1

Every Riemannian homogeneous space \((M, g)\) of dimension 3 or 4 is either symmetric or a Lie group with a left-invariant metric.

(SG, Svensson 2011): Give a classification for 3-dimensional Riemannian Lie groups admitting solutions. Find a continuous family of groups, containing \(\text{Sol}^3\), not carrying any left-invariant metric admitting complex-valued harmonic morphisms.
Fact 5.1

Every Riemannian homogeneous space (M, g) of dimension 3 or 4 is either symmetric or a Lie group with a left-invariant metric.

(SG, Svensson 2011): Give a classification for 3-dimensional Riemannian Lie groups admitting solutions. Find a continuous family of groups, containing Sol^3, not carrying any left-invariant metric admitting complex-valued harmonic morphisms.

(SG, Svensson 2013): Give a classification for 4-dimensional Riemannian Lie groups admitting left-invariant solutions. Most of the solutions constructed are NOT holomorphic with respect to any (integrable) Hermitian structure.
Fact 5.1

Every Riemannian homogeneous space \((M, g)\) of dimension 3 or 4 is either *symmetric* or a *Lie group* with a left-invariant metric.

(SG, Svensson 2011): Give a classification for 3-dimensional Riemannian Lie groups admitting solutions. Find a continuous family of groups, containing \(\text{Sol}^3\), not carrying any left-invariant metric admitting complex-valued harmonic morphisms.

(SG, Svensson 2013): Give a classification for 4-dimensional Riemannian Lie groups admitting *left-invariant* solutions. Most of the solutions constructed are *NOT holomorphic* with respect to any (integrable) Hermitian structure.

(SG 2013): Gives a partial classification for 5-dimensional Riemannian Lie groups admitting *left-invariant* solutions.

