Lie Foliations Producing Harmonic Morphisms

Sigmundur Gudmundsson

Department of Mathematics
Faculty of Science
Lund University

Cagliari - 14 September 2018

www.matematik.lu.se/matematiklu/personal/sigma/2018-09-14-Cagliari.pdf
1 Harmonic Morphisms

- Riemannian Geometry - Fuglede 1978, Ishihara 1979
- Geometric Motivation - Baird-Eells 1981
- Foliations - Minimality - Conformality
- Existence ?
Outline

1 Harmonic Morphisms
 - Riemannian Geometry - Fuglede 1978, Ishihara 1979
 - Geometric Motivation - Baird-Eells 1981
 - Foliations - Minimality - Conformality
 - Existence ?

2 3-dimensional Lie groups
 - Bianchi’s Classification
 - Lie Foliations Producing Harmonic Morphisms

3 4-dimensional Lie groups
 - Lie Foliations Producing Harmonic Morphisms

4 Case (A) - ($\lambda \neq 0$ and $(\lambda - \alpha)^2 + \beta^2 \neq 0$)

5 Case (B) - ($\lambda \neq 0$ and $(\lambda - \alpha)^2 + \beta^2 = 0$)

6 Case (C-F) - ($\lambda = 0$)

7 5-dimensional Lie groups
 - Sigmundur Gudmundsson
 - Lie Foliations Producing Harmonic Morphisms
Outline

1. Harmonic Morphisms
 - Riemannian Geometry - Fuglede 1978, Ishihara 1979
 - Geometric Motivation - Baird-Eells 1981
 - Foliations - Minimality - Conformality
 - Existence ?

2. 3-dimensional Lie groups
 - Bianchi’s Classification
 - Lie Foliations Producing Harmonic Morphisms

3. 4-dimensional Lie groups
 - Lie Foliations Producing Harmonic Morphisms
 - Case (A) - \((\lambda \neq 0 \text{ and } (\lambda - \alpha)^2 + \beta^2 \neq 0)\)
 - Case (B) - \((\lambda \neq 0 \text{ and } (\lambda - \alpha)^2 + \beta^2 = 0)\)
 - Case (C-F) - \((\lambda = 0)\)
Outline

1 Harmonic Morphisms
 - Riemannian Geometry - Fuglede 1978, Ishihara 1979
 - Geometric Motivation - Baird-Eells 1981
 - Foliations - Minimality - Conformality
 - Existence ?

2 3-dimensional Lie groups
 - Bianchi’s Classification
 - Lie Foliations Producing Harmonic Morphisms

3 4-dimensional Lie groups
 - Lie Foliations Producing Harmonic Morphisms
 - Case (A) - ($\lambda \neq 0$ and $(\lambda - \alpha)^2 + \beta^2 \neq 0$)
 - Case (B) - ($\lambda \neq 0$ and $(\lambda - \alpha)^2 + \beta^2 = 0$)
 - Case (C-F) - ($\lambda = 0$)

4 5-dimensional Lie groups
Definition 1.1 (Harmonic Morphisms (Fuglede 1978, Ishihara 1979))

A map \(\phi : (M^m, g) \rightarrow (N^n, h) \) between Riemannian manifolds is called a harmonic morphism if, for any harmonic function \(f : U \rightarrow \mathbb{R} \) defined on an open subset \(U \) of \(N \) with \(\phi^{-1}(U) \) non-empty, \(f \circ \phi : \phi^{-1}(U) \rightarrow \mathbb{R} \) is a harmonic function.
Definition 1.1 (Harmonic Morphisms (Fuglede 1978, Ishihara 1979))

A map $\phi : (M^m, g) \to (N^n, h)$ between Riemannian manifolds is called a **harmonic morphism** if, for any harmonic function $f : U \to \mathbb{R}$ defined on an open subset U of N with $\phi^{-1}(U)$ non-empty, $f \circ \phi : \phi^{-1}(U) \to \mathbb{R}$ is a harmonic function.

Theorem 1.2 (Fuglede 1978, Ishihara 1979)

A map $\phi : (M, g) \to (N, h)$ between Riemannian manifolds is a harmonic morphism if and only if it is harmonic and horizontally (weakly) conformal.
(Harmonicity)

For local coordinates x on (M, g) and y on (N, h), we have the non-linear system

$$
\tau(\phi) = \sum_{i,j=1}^{m} g^{ij}(x) \left(\frac{\partial^2 \phi^\gamma}{\partial x_i \partial x_j} - \sum_{k=1}^{m} \hat{\Gamma}^k_{ij} \frac{\partial \phi^\gamma}{\partial x_k} + \sum_{\alpha,\beta=1}^{n} \Gamma^\gamma_{\alpha \beta} \circ \phi \frac{\partial \phi^\alpha}{\partial x_i} \frac{\partial \phi^\beta}{\partial x_j} \right) = 0,
$$

where $\phi^\alpha = y_\alpha \circ \phi$ and $\hat{\Gamma}, \Gamma$ are the Christoffel symbols on M, N, resp.
(Harmonicity)

For local coordinates x on (M, g) and y on (N, h), we have the non-linear system

$$
\tau(\phi) = \sum_{i,j=1}^{m} g^{ij} \left(\frac{\partial^2 \phi^\gamma}{\partial x_i \partial x_j} - \sum_{k=1}^{m} \hat{\Gamma}^k_{ij} \frac{\partial \phi^\gamma}{\partial x_k} + \sum_{\alpha,\beta=1}^{n} \Gamma_{\alpha\beta} \circ \phi \frac{\partial \phi^\alpha}{\partial x_i} \frac{\partial \phi^\beta}{\partial x_j} \right) = 0,
$$

where $\phi^\alpha = y_\alpha \circ \phi$ and $\hat{\Gamma}, \Gamma$ are the Christoffel symbols on M, N, resp.

(Horizontal (weak) Conformality)

There exists a continuous function $\lambda : M \to \mathbb{R}_0^+$ such that for all $\alpha, \beta = 1, 2, \ldots, n$

$$
\sum_{i,j=1}^{m} g^{ij}(x) \frac{\partial \phi^\alpha}{\partial x_i}(x) \frac{\partial \phi^\beta}{\partial x_j}(x) = \lambda^2(x) h^{\alpha\beta}(\phi(x)).
$$

This is a first order non-linear system of $[(n+1)/2] - 1$ equations.
Theorem 1.3 (Baird, Eells 1981)

Let $\phi : (M, g) \to (N^2, h)$ be a horizontally conformal map from a Riemannian manifold to a surface. Then ϕ is harmonic if and only if its fibres are minimal at regular points ϕ.

This means, at least for local studies, (N^2, h) can be chosen to be the standard complex plane \mathbb{C}.

The problem is invariant under isometries on (M, g). If the codomain (N^2, h) is a surface ($n = 2$) then it is also invariant under conformal changes $\sigma^2 h$ of the metric on N^2.

References

- Riemannian Geometry - Fuglede 1978, Ishihara 1979
- Geometric Motivation - Baird-Eells 1981
- Foliations - Minimality - Conformality
- Existence?
Theorem 1.3 (Baird, Eells 1981)

Let \(\phi : (M, g) \to (N^2, h) \) be a horizontally conformal map from a Riemannian manifold to a surface. Then \(\phi \) is harmonic if and only if its fibres are minimal at regular points \(\phi \).

The problem is invariant under isometries on \((M, g) \). If the codomain \((N, h) \) is a surface \((n = 2) \) then it is also invariant under conformal changes \(\sigma^2 h \) of the metric on \(N^2 \). This means, at least for local studies, that \((N^2, h) \) can be chosen to be the standard complex plane \(\mathbb{C} \).
Let $\phi : (M, g) \to (N^2, h)$ be a submersive harmonic morphism from a Riemannian manifold to a surface. Then this induces a conformal foliation \mathcal{F} on (M, g) with minimal leaves of codimension 2.
Let $\phi : (M, g) \rightarrow (N^2, h)$ be a submersive harmonic morphism from a Riemannian manifold to a surface. Then this induces a conformal foliation \mathcal{F} on (M, g) with minimal leaves of codimension 2.

Let \mathcal{F} be a conformal foliation on (M, g) with minimal leaves of codimension 2. Then \mathcal{F} produces locally submersive harmonic morphisms from (M, g) to surfaces.
Let $\phi : (M, g) \rightarrow (N^2, h)$ be a submersive harmonic morphism from a Riemannian manifold to a surface. Then this induces a conformal foliation \mathcal{F} on (M, g) with minimal leaves of codimension 2.

Let \mathcal{F} be a conformal foliation on (M, g) with minimal leaves of codimension 2. Then \mathcal{F} produces locally submersive harmonic morphisms from (M, g) to surfaces.

Let \mathcal{V} be the integrable subbundle of TM tangent to the fibres of \mathcal{F} and \mathcal{H} be its orthogonal complement. Then the second fundamental form for \mathcal{H} is given by

$$B^\mathcal{H}(X, Y) = \frac{1}{2} \mathcal{V}(\nabla_X Y + \nabla_Y X) \quad (X, Y \in \mathcal{H}).$$
Let \(\phi : (M, g) \to (N^2, h) \) be a submersive harmonic morphism from a Riemannian manifold to a surface. Then this induces a conformal foliation \(\mathcal{F} \) on \((M, g) \) with minimal leaves of codimension 2.

Let \(\mathcal{F} \) be a conformal foliation on \((M, g) \) with minimal leaves of codimension 2. Then \(\mathcal{F} \) produces locally submersive harmonic morphisms from \((M, g) \) to surfaces.

Let \(\mathcal{V} \) be the integrable subbundle of \(TM \) tangent to the fibres of \(\mathcal{F} \) and \(\mathcal{H} \) be its orthogonal complement. Then the second fundamental form for \(\mathcal{H} \) is given by

\[
B^\mathcal{H}(X, Y) = \frac{1}{2} \mathcal{V}(\nabla X Y + \nabla Y X) \quad (X, Y \in \mathcal{H}).
\]

\(\mathcal{F} \) is said to be conformal if there is a vector field \(V \in \mathcal{V} \) such that

\[
B^\mathcal{H} = g \otimes V.
\]

\(\mathcal{F} \) is said to be Riemannian if \(V = 0 \).
Example 1.4 (The Nilpotent Lie Group Nil3)

$$(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in SL_3(\mathbb{R}).$$

The left-invariant metric, with orthonormal basis

$$\{ X = \partial/\partial x, \ Y = \partial/\partial y, \ Z = \partial/\partial z \}$$

at the neutral element $e = (0, 0, 0)$, is given by

$$ds^2 = dx^2 + dy^2 + (dz - xdy)^2.$$
Example 1.4 (The Nilpotent Lie Group Nil^3)

$$(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in \text{SL}_3(\mathbb{R}).$$

The left-invariant metric, with orthonormal basis

$$\{ X = \partial/\partial x, \ Y = \partial/\partial y, \ Z = \partial/\partial z \}$$

at the neutral element $e = (0, 0, 0)$, is given by

$$ds^2 = dx^2 + dy^2 + (dz - xdy)^2.$$

(Baird, Wood 1990): Every local solution is a restriction of the globally defined harmonic morphism $\phi : \text{Nil}^3 \rightarrow \mathbb{C}$ with

$$\phi : \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mapsto x + iy.$$
Example 1.5 (The Solvable Lie Group Sol3)

\[(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix} \in \text{SL}_3(\mathbb{R}).\]

The left-invariant metric, with orthonormal basis

\[\{ X = \partial/\partial x, \ Y = \partial/\partial y, \ Z = \partial/\partial z \}\]

at the neutral element $e = (0, 0, 0)$, is given by

\[ds^2 = e^{2z}dx^2 + e^{-2z}dy^2 + dz^2.\]
Example 1.5 (The Solvable Lie Group Sol^3)

$$(x, y, z) \in \mathbb{R}^3 \mapsto \begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix} \in \text{SL}_3(\mathbb{R}).$$

The left-invariant metric, with orthonormal basis

$$\{ X = \partial/\partial x, \ Y = \partial/\partial y, \ Z = \partial/\partial z \}$$

at the neutral element $e = (0, 0, 0)$, is given by

$$ds^2 = e^{2z}dx^2 + e^{-2z}dy^2 + dz^2.$$

(Baird, Wood 1990): No solutions exist, not even locally.

$$e^{-2z} \frac{\partial^2 \phi}{\partial x^2} + e^{2z} \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0,$$

$$e^{-2z} \left(\frac{\partial \phi}{\partial x} \right)^2 + e^{2z} \left(\frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 = 0.$$
At the end of the 19th century, L. Bianchi classified the 3-dimensional real Lie algebras. They fall into nine disjoint types I-IX. Each contains a single isomorphpy class except types VI and VII which are continuous families of different classes.
At the end of the 19th century, L. Bianchi classified the 3-dimensional real Lie algebras. They fall into nine disjoint types I-IX. Each contains a single isomorphy class except types VI and VII which are continuous families of different classes.

Example 2.1 (Type I)

The Abelian Lie algebra \mathbb{R}^3; the corresponding simply connected Lie group is of course the Abelian group \mathbb{R}^3 which we equip with the standard flat metric.
At the end of the 19th century, L. Bianchi classified the 3-dimensional real Lie algebras. They fall into nine disjoint types I-IX. Each contains a single isomorphy class except types VI and VII which are continuous families of different classes.

Example 2.1 (Type I)

The Abelian Lie algebra \mathbb{R}^3; the corresponding simply connected Lie group is of course the Abelian group \mathbb{R}^3 which we equip with the standard flat metric.

Example 2.2 (Type II)

The Lie algebra n_3 with a basis X, Y, Z satisfying

$$[X, Y] = Z.$$

The corresponding simply connected Lie group is the nilpotent Heisenberg group Nil^3.
Example 2.3 (Type III)

The Lie algebra $\mathfrak{h}^2 \oplus \mathbb{R} = \text{span}\{X, Y, Z\}$, where \mathfrak{h}^2 is the two-dimensional Lie algebra with basis X, Y satisfying

$$[Y, X] = X.$$

The corresponding simply connected Lie group is denoted by $H^2 \times \mathbb{R}$. Here H^2 is the standard hyperbolic plane.
Example 2.3 (Type III)

The Lie algebra \(h^2 \oplus \mathbb{R} = \text{span}\{X, Y, Z\} \), where \(h^2 \) is the two-dimensional Lie algebra with basis \(X, Y \) satisfying

\[
[Y, X] = X.
\]

The corresponding simply connected Lie group is denoted by \(H^2 \times \mathbb{R} \). Here \(H^2 \) is the standard hyperbolic plane.

Example 2.4 (Type IV)

The Lie algebra \(g_4 \) with a basis \(X, Y, Z \) satisfying

\[
[Z, X] = X, \quad [Z, Y] = X + Y.
\]

The corresponding simply connected Lie group is denoted by \(G_4 \).
Example 2.5 (Type V)

The Lie algebra \mathfrak{h}^3 with a basis X, Y, Z satisfying

$$[Z, X] = X, \quad [Z, Y] = Y.$$

The corresponding simply connected Lie group H^3 is the standard hyperbolic 3-space of constant sectional curvature -1.

Example 2.6 (Type VI)

The Lie algebra $\mathfrak{sol}_3^{\alpha}$, where $\alpha > 0$, is the Lie algebra with basis X, Y, Z satisfying

$$[Z, X] = \alpha X, \quad [Z, Y] = -Y.$$

The corresponding simply connected Lie group is denoted by Sol^3_{α}. The group Sol mentioned in the introduction is actually Sol^3_{1}.

Sigmundur Gudmundsson
Example 2.5 (Type V)

The Lie algebra \mathfrak{h}^3 with a basis X, Y, Z satisfying

$$[Z, X] = X, \quad [Z, Y] = Y.$$

The corresponding simply connected Lie group H^3 is the standard hyperbolic 3-space of constant sectional curvature -1.

Example 2.6 (Type VI)

The Lie algebra \mathfrak{sol}_α^3, where $\alpha > 0$, is the Lie algebra with basis X, Y, Z satisfying

$$[Z, X] = \alpha X, \quad [Z, Y] = -Y.$$

The corresponding simply connected Lie group is denoted by Sol_α^3. The group Sol mentioned in the introduction is actually Sol_1^3.
Example 2.7 (Type VII)

The Lie algebra $\mathfrak{g}_7(\alpha)$, where $\alpha \in \mathbb{R}$, is the the Lie algebra with basis X, Y, Z satisfying

$$[Z, X] = \alpha X - Y, \quad [Z, Y] = X + \alpha Y.$$

The corresponding simply connected Lie group is denoted by $G_7(\alpha)$.

Example 2.7 (Type VII)

The Lie algebra $\mathfrak{g}_7(\alpha)$, where $\alpha \in \mathbb{R}$, is the Lie algebra with basis X, Y, Z satisfying

$$[Z, X] = \alpha X - Y, \quad [Z, Y] = X + \alpha Y.$$

The corresponding simply connected Lie group is denoted by $G_7(\alpha)$.

Example 2.8 (Type VIII)

The Lie algebra $\mathfrak{sl}_2(\mathbb{R})$ with a basis X, Y, Z satisfying

$$[X, Y] = -2Z, \quad [Z, X] = 2Y, \quad [Y, Z] = 2X.$$

The corresponding simply connected Lie group is denoted by $\widetilde{SL}_2(\mathbb{R})$ as it is the universal cover of the special linear group $SL_2(\mathbb{R})$.
Example 2.9 (Type IX)

The Lie algebra \(\mathfrak{su}(2) \) with a basis \(X, Y, Z \) satisfying

\[
[X, Y] = 2Z, \quad [Z, X] = 2Y, \quad [Y, Z] = 2X.
\]

The corresponding simply connected Lie group is of course \(SU(2) \). This is isometric to the standard 3-sphere of constant curvature +1.
Example 2.9 (Type IX)

The Lie algebra \(\mathfrak{su}(2) \) with a basis \(X, Y, Z \) satisfying

\[
[X, Y] = 2Z, \quad [Z, X] = 2Y, \quad [Y, Z] = 2X.
\]

The corresponding simply connected Lie group is of course \(\text{SU}(2) \). This is isometric to the standard 3-sphere of constant curvature +1.

Definition 2.10 (Lie Foliations)

Let \(G \) be a Lie group equipped with a left-invariant Riemannian metric and \(K \) be a subgroup of \(G \). Then the natural projection \(\pi : G \to G/K \) induces a foliation \(\mathcal{F} \) on \(G \). The leaves of \(\mathcal{F} \) are the fibres \(\pi^{-1}(gK) \) of \(\pi \).
Theorem 2.11 (G, Svensson (2009))

Let G be a connected 3-dimensional Lie group with a left-invariant metric of non-constant sectional curvature. Then any local conformal foliation by geodesics of a connected open subset of G can be extended to a global conformal foliation \mathcal{F} by geodesics of G. This is given by the left-translation of a 1-parameter subgroup of G i.e. \mathcal{F} is a Lie foliation.
Theorem 2.11 (G, Svensson (2009))

Let G be a connected 3-dimensional Lie group with a left-invariant metric of non-constant sectional curvature. Then any local conformal foliation by geodesics of a connected open subset of G can be extended to a global conformal foliation F by geodesics of G. This is given by the left-translation of a 1-parameter subgroup of G i.e. F is a Lie foliation.

Let G be a 3-dimensional Riemannian Lie group with Lie algebra \mathfrak{g} generated by the elements of the orthonormal basis $\{X, Y, Z\}$. Let F be a 1-dimensional conformal and minimal foliation of G generated by the left-invariant vector field Z. Then the Lie brackets of \mathfrak{g} must satisfy

\[
\begin{align*}
[Z, X] &= aX + bY, \\
[Z, Y] &= -bX + aY, \\
[X, Y] &= xX + yY + zZ,
\end{align*}
\]

where $a, b, x, y, z \in \mathbb{R}$. The Jacobi identity shows that here we have a Lie algebra if and only if the following system of 3 quadratic equations in 5 variables are satisfied

\[
a z = 0, \quad a x + b y = 0, \quad b x - a y = 0.
\]
The following THREE families of 3-dimensional Lie algebras give a complete classification.
Theorem 2.12 (G, Svensson (2011))

The following THREE families of 3-dimensional Lie algebras give a complete classification.

Example 2.13

When $x = y = a = 0$ we obtain a 2-dimensional family with the bracket relations

\[
\begin{align*}
[Z, X] &= bY, \\
[Z, Y] &= -bX, \\
[X, Y] &= zZ,
\end{align*}
\]

When $bz < 0$ the Lie algebra is of type VIII and of type IX if $bz > 0$. The case when $z = 0$ and $b \neq 0$ is of type VII ($\alpha = 0$), and the case when $b = 0$ and $z \neq 0$ is of type II. The case when $b = z = 0$ is of type I.
Example 2.14

With $a = b = 0$ we yield a 3-dimensional family of Lie groups with bracket relation

$$[X, Y] = xX + yY + zZ.$$

If $x = y = z = 0$ then the type is I. If x or y non-zero then we have type III. If $z \neq 0$ and $x = y = 0$, then the type is II.
Example 2.14

With $a = b = 0$ we yield a 3-dimensional family of Lie groups with bracket relation

$$[X, Y] = xX + yY + zZ.$$

If $x = y = z = 0$ then the type is I. If x or y non-zero then we have type III. If $z \neq 0$ and $x = y = 0$, then the type is II.

Example 2.15

In the case of $x = y = z = 0$ we get semi-direct products $\mathbb{R}^2 \rtimes \mathbb{R}$ with bracket relations

$$[Z, X] = aX + bY,$$

$$[Z, Y] = -bX + aY.$$

If $b \neq 0$ then the Lie algebra is of type VII. If $b = 0$ then the Lie algebra is of type V or of type I if also $a = 0$.
Theorem 2.16

Let G be a 3-dimensional Lie group with Lie algebra \mathfrak{g}. Then there exists a left-invariant Riemannian metric g on G and a left-invariant horizontally conformal foliation on (G, g) by geodesics if and only if the Lie algebra \mathfrak{g} is neither of type IV nor of type VI.
Theorem 2.16

Let G be a 3-dimensional Lie group with Lie algebra \mathfrak{g}. Then there exists a left-invariant Riemannian metric g on G and a left-invariant horizontally conformal foliation on (G, g) by geodesics if and only if the Lie algebra \mathfrak{g} is neither of type IV nor of type VI.

Type IV: The single case of G_4.
Theorem 2.16

Let G be a 3-dimensional Lie group with Lie algebra \mathfrak{g}. Then there exists a left-invariant Riemannian metric g on G and a left-invariant horizontally conformal foliation on (G, g) by geodesics if and only if the Lie algebra \mathfrak{g} is neither of type IV nor of type VI.

Type IV: The single case of G_4.

Type VI: The continuous family of Sol^3_α, where $\alpha > 0$.

Note that in the cases of type I, II, III, V, VII, VIII and IX the possible left-invariant Riemannian metrics are completely determined via isomorphisms to the standard examples.
Let G be a 4-dimensional Riemannian Lie group with Lie algebra \mathfrak{g} generated by the elements of the orthonormal basis $\{X, Y, Z, W\}$. Let \mathcal{F} be a 2-dimensional conformal and minimal Lie foliation of G generated by the left-invariant vector fields Z and W. Then the Lie bracket of \mathfrak{g} must satisfy the following **SIX** relations

\[
\begin{align*}
[W, Z] &= \lambda W, \\
[Z, X] &= \alpha X + \beta Y + z_1 Z + w_1 W, \\
[W, X] &= aX + bY + z_3 Z - z_1 W, \\
[Y, X] &= rX + \theta_1 Z + \theta_2 W
\end{align*}
\]
Let G be a 4-dimensional Riemannian Lie group with Lie algebra \mathfrak{g} generated by the elements of the orthonormal basis $\{X, Y, Z, W\}$. Let \mathcal{F} be a 2-dimensional conformal and minimal Lie foliation of G generated by the left-invariant vector fields Z and W. Then the Lie bracket of \mathfrak{g} must satisfy the following **Six** relations

\[
\begin{align*}
[W, Z] & = \lambda W, \\
[Z, X] & = \alpha X + \beta Y + z_1 Z + w_1 W, \quad [Z, Y] = -\beta X + \alpha Y + z_2 Z + w_2 W, \\
[W, X] & = aX + bY + z_3 Z - z_1 W, \quad [W, Y] = -bX + aY + z_4 Z - z_2 W, \\
[Y, X] & = rX + \theta_1 Z + \theta_2 W
\end{align*}
\]

Proposition 1

Let G be a 4-dimensional Lie group and $\{X, Y, Z, W\}$ be an orthonormal basis for its Lie algebra as above. Then

(i) \mathcal{F} is totally geodesic if and only if $z_1 = z_2 = z_3 + w_1 = z_4 + w_2 = 0$,

(ii) \mathcal{F} is Riemannian if and only if $\alpha = a = 0$, and

(iii) \mathcal{H} is integrable if and only if $\theta_1 = \theta_2 = 0$.

Sigmundur Gudmundsson
Harmonic Morphisms

3-dimensional Lie groups

4-dimensional Lie groups

5-dimensional Lie groups

References

Lie Foliations Producing Harmonic Morphisms

Case (A) - \((\lambda \neq 0 \text{ and } (\lambda - \alpha)^2 + \beta^2 \neq 0)\)

Case (B) - \((\lambda \neq 0 \text{ and } (\lambda - \alpha)^2 + \beta^2 = 0)\)

Case (C-F) - \((\lambda = 0)\)

0 = \lambda a,
0 = \lambda b,
0 = -w_2 z_3 + w_1 z_4 - 2\alpha \theta_1 + rz_1,
0 = -2z_4 z_1 + 2z_3 z_2 - 2a \theta_1 + rz_3,
0 = -\lambda z_3 - z_2 b + z_4 \beta - z_1 a + z_3 \alpha,
0 = -\lambda z_4 - z_2 a + z_4 \alpha + z_1 b - z_3 \beta,
0 = \lambda \theta_1 - w_1 z_4 + w_2 z_3 - 2a \theta_2 - rz_1,
0 = -\lambda \theta_2 + 2z_1 w_2 - 2z_2 w_1 - 2a \theta_2 + rw_1,
0 = -w_2 a - w_1 b - z_2 \alpha - z_1 \beta - \alpha r,
0 = -w_2 b + w_1 a - z_2 \beta + z_1 \alpha + r \beta,
0 = \lambda z_1 - w_2 b - z_2 \beta - w_1 a - z_1 \alpha,
0 = z_2 a + z_1 b - z_4 \alpha - z_3 \beta - ar,
0 = z_2 b - z_1 a - z_4 \beta + z_3 \alpha + rb,
0 = \lambda z_2 - w_2 a - z_2 \alpha + w_1 b + z_1 \beta.

Maple 17: Time 0.89 seconds - Memory: 38.18 Mb
Theorem 3.1 (G, Svensson (2014))

Let G be a 4-dimensional Riemannian Lie group. Let \mathcal{F} be a conformal Lie foliation on G with minimal leaves of codimension 2. Then the Lie algebra \mathfrak{g} of G belongs to one of 20 multi-dimensional families $\mathfrak{g}_1, \ldots, \mathfrak{g}_{20}$ of Lie algebras and \mathcal{F} is the corresponding foliation generated by \mathfrak{g}.

Case (A) - ($\lambda \neq 0$ and $(\lambda - \alpha)^2 + \beta^2 \neq 0$)
Case (B) - ($\lambda \neq 0$ and $(\lambda - \alpha)^2 + \beta^2 = 0$)
Case (C-F) - ($\lambda = 0$)
An elementary calculation shows that the two Jacobi equations

\[
[[W, Z], X] + [[X, W], Z] + [[Z, X], W] = 0, \tag{1}
\]

\[
[[W, Z], Y] + [[Y, W], Z] + [[Z, Y], W] = 0 \tag{2}
\]

are equivalent to the following relations for the real structure constants

\[
\begin{pmatrix}
\beta & \lambda - \alpha \\
\lambda - \alpha & -\beta \\
\end{pmatrix}
\begin{pmatrix}
z_1 \\
z_2 \\
\end{pmatrix}
\begin{pmatrix}
z_4 \\
-z_3 \\
\end{pmatrix}
= \begin{pmatrix}
0 \\
0 \\
\end{pmatrix}. \tag{3}
\]
An elementary calculation shows that the two Jacobi equations

$$[[W, Z], X] + [[X, W], Z] + [[Z, X], W] = 0,$$

(1)

$$[[W, Z], Y] + [[Y, W], Z] + [[Z, Y], W] = 0$$

(2)

are equivalent to the following relations for the real structure constants

$$\begin{pmatrix} \beta & \lambda - \alpha \\ \lambda - \alpha & -\beta \end{pmatrix} \begin{pmatrix} z_1 & z_4 \\ z_2 & -z_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

(3)

Applying equation (3) we see that $z = 0$ so the Lie brackets satisfy

$$[W, Z] = \lambda W,$$

$$[Z, X] = \alpha X + \beta Y + w_1 W,$$

$$[Z, Y] = -\beta X + \alpha Y + w_2 W,$$

$$[Y, X] = r X + \theta_1 Z + \theta_2 W.$$
In this situation it is easily seen that the two remaining Jacobi equations are equivalent to $\theta_1 = r\alpha = r\beta = 0$ and $\theta_2(\lambda + 2\alpha) = rw_1$.
In this situation it is easily seen that the two remaining Jacobi equations are equivalent to \(\theta_1 = r\alpha = r\beta = 0 \) and \(\theta_2(\lambda + 2\alpha) = rw_1 \).

Example 3.2 \((g_1(\lambda, r, w_1, w_2))\)

If \(r \neq 0 \) then clearly \(\alpha = \beta = 0 \) and \(rw_1 = \lambda \theta_2 \). This gives a 4-dimensional family of solutions satisfying the following Lie bracket relations

\[
\begin{align*}
[W, Z] &= \lambda W, \\
[Z, X] &= w_1 W, \\
[Z, Y] &= w_2 W, \\
\lambda [Y, X] &= \lambda r X + rw_1 W.
\end{align*}
\]
On the other hand, if $r = 0$ then clearly $\theta_1 = \theta_2(\lambda + 2\alpha) = 0$ providing us with the following two examples.

Example 3.3 ($g_2(\lambda, \alpha, \beta, w_1, w_2)$)

For $r = \theta_1 = \theta_2 = 0$ we have the family $g = g_2(\lambda, \alpha, \beta, w_1, w_2)$ given by

\[
\begin{align*}
[W, Z] &= \lambda W, \\
[Z, X] &= \alpha X + \beta Y + w_1 W, \\
[Z, Y] &= -\beta X + \alpha Y + w_2 W.
\end{align*}
\]
On the other hand, if \(r = 0 \) then clearly \(\theta_1 = \theta_2(\lambda + 2\alpha) = 0 \) providing us with the following two examples.

Example 3.3 \((g_2(\lambda, \alpha, \beta, w_1, w_2))\)

For \(r = \theta_1 = \theta_2 = 0 \) we have the family \(g = g_2(\lambda, \alpha, \beta, w_1, w_2) \) given by

\[
[W, Z] = \lambda W,
[Z, X] = \alpha X + \beta Y + w_1 W,
[Z, Y] = -\beta X + \alpha Y + w_2 W.
\]

Example 3.4 \((g_3(\alpha, \beta, w_1, w_2, \theta_2))\)

If \(r = \theta_1 = 0 \) and \(\theta_2 \neq 0 \) then \(\lambda = -2\alpha \) provides us with the family \(g = g_3(\alpha, \beta, w_1, w_2, \theta_2) \) of solutions satisfying

\[
[W, Z] = -2\alpha W,
[Z, X] = \alpha X + \beta Y + w_1 W,
[Z, Y] = -\beta X + \alpha Y + w_2 W,
[Y, X] = \theta_2 W.
\]
Under the assumptions that $\alpha = \lambda$ and $\beta = 0$ we have

\[
\begin{align*}
[W, Z] &= \lambda W, \\
[Z, X] &= \lambda X + z_1 Z + w_1 W, \quad [Z, Y] = \lambda Y + z_2 Z + w_2 W, \\
[W, X] &= z_3 Z - z_1 W, \quad [W, Y] = z_4 Z - z_2 W, \\
[Y, X] &= r X + \theta_1 Z + \theta_2 W.
\end{align*}
\]

The last two Jacobi equations are easily seen to be equivalent to

\[
\begin{align*}
z_1 &= z_3 = z_4 = \theta_1 = 0, \quad z_2 = -r \quad \text{and} \quad \lambda \theta_2 = -z_2 w_1.
\end{align*}
\]

Example 3.5 ($\mathfrak{g}_4(\lambda, z_2, w_1, w_2)$)

In this case we have the family of solutions given by

\[
\begin{align*}
[W, Z] &= \lambda W, \\
[Z, X] &= \lambda X + w_1 W, \\
[Z, Y] &= \lambda Y + z_2 Z + w_2 W, \\
[W, Y] &= -z_2 W, \\
\lambda [Y, X] &= -z_2 \lambda X - z_2 w_1 W.
\end{align*}
\]
That story is far too long for this talk :-)

We get the following collection of 4-dimensional Lie foliations producing harmonic morphisms.

\[g_5(\alpha, a, \beta, b, r), \quad g_6(z_1, z_2, z_3, r, \theta_1, \theta_2), \]
\[g_7(z_2, w_1, w_2, \theta_1, \theta_2), \quad g_8(z_2, z_4, w_2, r, \theta_1, \theta_2), \]
\[g_9(z_2, z_3, z_4, \theta_1, \theta_2), \quad g_{10}(\alpha, a, \beta, b), \]
\[g_{11}(z_1, z_2, z_3, w_1, \theta_1, \theta_2), \quad g_{12}(z_3, w_1, w_2, \theta_1, \theta_2), \]
\[g_{13}(z_3, z_4, \theta_1, \theta_2), \quad g_{14}(z_2, z_4, w_2, \theta_1, \theta_2), \]
\[g_{15}(\alpha, w_1, w_2), \quad g_{16}(\beta, w_1, w_2, \theta_1, \theta_2), \]
\[g_{17}(\alpha, a, w_1, w_2), \quad g_{18}(\beta, b, z_3, z_4, \theta_1, \theta_2), \]
\[g_{19}(\alpha, \beta, w_1, w_2), \quad g_{20}(\alpha, a, \beta, w_1, w_2). \]
Theorem 4.1 ($\mathfrak{k} = \mathfrak{su}(2)$)

Let G be a 5-dimensional Riemannian Lie group carrying a conformal and minimal Lie foliation F, generated by the subalgebra $\mathfrak{su}(2)$ of \mathfrak{g} as above. Then the Lie bracket relations are of the form

\[
\begin{align*}
[X, Y] &= 2\lambda Z, \quad [Z, X] = 2\lambda Y, \quad [Y, Z] = 2X/\lambda, \\
[X, A] &= -\lambda^2 x_3 Y - \lambda^2 x_5 Z, \quad [X, B] = -\lambda^2 x_4 Y - \lambda^2 x_6 Z, \\
[Y, A] &= x_3 X + z_3 Z, \quad [Y, B] = x_4 X + z_4, \\
[Z, A] &= x_5 X - z_3 Y, \quad [Z, B] = x_6 X - z_4 Y, \\
[A, B] &= rA + \theta_1 X + \theta_2 Y + \theta_3 Z,
\end{align*}
\]

where $\theta_1, \theta_2, \theta_3$ are given by

\[
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
rz_3/\lambda + \lambda(x_3x_6 - x_4x_5) \\
\lambda(rx_5 - x_3z_4 + x_4z_3) \\
-\lambda(rx_3 + z_4x_5 - z_3x_6)
\end{pmatrix}.
\]

The foliation F is Riemannian. It is totally geodesic if and only if $\lambda = 1$ i.e. the leaves are 3-dimensional round spheres.
Theorem 4.2 ($\ell = 2$)

Let G be a 5-dimensional Riemannian Lie group carrying a left-invariant, minimal and conformal distribution \mathcal{V}, generated by the Riemannian subalgebra $\mathfrak{sl}_2(\mathbb{R})$ of \mathfrak{g} as above. Then the Lie bracket relations are of the form

\[
\begin{align*}
[X, Y] &= 2\lambda Z, \quad [Z, X] = 2\lambda Y, \quad [Y, Z] = -2X/\lambda, \\
[X, A] &= \lambda^2 x_3 Y + \lambda^2 x_5 Z, \quad [X, B] = \lambda^2 x_4 Y + \lambda^2 x_6 Z, \\
[Y, A] &= x_3 X + z_3 Z, \quad [Y, B] = x_4 X + z_4 Z, \\
[Z, A] &= x_5 X - z_3 Y, \quad [Z, B] = x_6 X - z_4 Y, \\
[A, B] &= rA + \theta_1 X + \theta_2 Y + \theta_3 Z,
\end{align*}
\]

where $\theta_1, \theta_2, \theta_3$ are given by

\[
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
rz_3/\lambda - \lambda(x_3x_6 - x_4x_5) \\
-\lambda(rx_5 - x_3z_4 + x_4z_3) \\
\lambda(rx_3 + z_4x_5 - z_3x_6)
\end{pmatrix}.
\]

The corresponding foliation \mathcal{F} is Riemannian but not totally geodesic for any values of $\lambda \in \mathbb{R}^+$.
